精英家教网 > 高中数学 > 题目详情
已知点F1、F2分别是椭圆的左、右焦点,A、B是以O(O
为坐标原点)为圆心、|OF1|为半径的圆与该椭圆左半部分的两个交点,且△F2AB是正三角形,则此椭圆的离心率为(   )
A.       B.        C.        D.
D

试题分析:因为是正三角形,可知点的坐标为,代入椭圆方程化简即可求出该椭圆的离心率为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,离心率为的椭圆上的点到其左焦点的距离的最大值为3,过椭圆内一点的两条直线分别与椭圆交于点,且满足,其中为常数,过点的平行线交椭圆于两点.

(1)求椭圆的方程;
(2)若点,求直线的方程,并证明点平分线段.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点为,离心率为.设是椭圆长轴上的一个动点,过点且斜率为的直线交椭圆于两点.
(1)求椭圆的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线:的准线与轴交于点,焦点为;椭圆为焦点,离心率.设的一个交点.

(1)求椭圆的方程.
(2)直线的右焦点,交两点,且等于的周长,求的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的短半轴长为,动点在直线为半焦距)上.
(1)求椭圆的标准方程;
(2)求以为直径且被直线截得的弦长为的圆的方程;
(3)设是椭圆的右焦点,过点的垂线与以为直径的圆交于点
求证:线段的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,一圆形纸片的圆心为O,F为圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆:,左右焦点分别为,过的直线交椭圆于A,B两点,若的最大值为5,则的值是 (    )
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆G:.过点(m,0)作圆的切线l交椭圆G于A,B两点.
(1)求椭圆G的焦点坐标和离心率;
(2)将表示为m的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆C:的中心、右焦点、右顶点依次分别为O,F,G,且直线与x轴相交于点H,则最大时椭圆的离心率为________.

查看答案和解析>>

同步练习册答案