【题目】已知函数,其中.
(1)当时,求曲线在点处切线的方程;
(2)当时,求函数的单调区间;
(3)若,证明对任意,恒成立.
【答案】(1);(2)在和内是增函数,在内是减函数;(3)见解析
【解析】
(1)当时,求得,进而得到,利用直线的点斜式方程,即可求解;
(2)求得函数的导数,三种情况分类讨论,即可求解.
(3)把,转化为,令,利用导数求得函数的单调性与最值,即可求解.
(1)当时,则函数,
则,则,
曲线在点处切线的方程为,即.
(2)由函数,则,
令,,,又,
①若,,当变化时,,的变化情况如下表:
+ | 0 | - | 0 | + | |
极大值 | 极小值 |
所以在区间和内是增函数,在内是减函数.
②若,,当变化时,,的变化情况如下表:
+ | 0 | - | 0 | + | |
极大值 | 极小值 |
所以在和内是增函数,在内是减函数.
(3)因,所以在内是减函数,又,
不妨设,则,.
于是,等价于,
即,
令,
因在内是减函数,
故,从而在内是减函数,
∴对任意,有,即,
∴当时,对任意,恒成立.
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,,四边形BDEF是矩形,平面平面ABCD,,H是CF的中点.
(1)求证:平面BDEF;
(2)求直线DH与平面CEF所成角的正弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|1-a≤x≤1+a}(a>0),B={x|x2-5x+4≤0}.
(1)若“x∈A”是“x∈B”的必要不充分条件,求实数a的取值范围;
(2)对任意x∈B,不等式x2-mx+4≥0都成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在上的函数满足如下条件:①函数的图象关于轴对称;②对于任意,;③当时,;④函数,,若过点的直线与函数的图象在上恰有8个交点,则直线斜率的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲是某商店2018年(按360天计算)的日盈利额(单位:万元)的统计图.
(1)请计算出该商店2018年日盈利额的平均值(精确到0.1,单位:万元):
(2)为了刺激消费者,该商店于2019年1月举行有奖促销活动,顾客凡购买一定金额的高品后均可参加抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店对前5天抽奖活动的人数进行统计如下表:(表示第天参加抽奖活动的人数)
1 | 2 | 3 | 4 | 5 | |
50 | 60 | 70 | 80 | 100 |
经过进一步统计分析,发现与具有线性相关关系.
(ⅰ)根据上表提供的数据,用最小二乘法求出关于的线性回归方程:
(ⅱ)该商店采取转盘方式进行抽奖(如图乙),其中转盘是个八等分的圆.每位顾客最多两次抽奖机会,若第一次抽到奖,则抽奖终止,若第一次未抽到奖,则再提供一次抽奖机会.抽到一等奖的奖品价值128元,抽到二等奖的奖品价值32元.若该商店此次抽奖活动持续7天,试估计该商店在此次抽奖活动结束时共送出价值为多少元的奖品(精确到0.1,单位:万元)?
(3)用(1)中的2018年日盈利额的平均值去估计当月(共31天)每天的日盈利额.若商店每天的固定支出约为1000元,促销活动日的日盈利额比平常增加20%,则该商店当月的纯利润约为多少万元?(精确到0.1,纯利润=盈利额-固定支出-抽奖总奖金数)
参考公式及数据:,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加一次抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商场对前5天抽奖活动的人数进行统计,y表示第x天参加抽奖活动的人数,得到统计表如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 50 | 60 | 70 | 80 | 100 |
经过进一步统计分析,发现y与x具有线性相关关系.
(1)若从这5天随机抽取两天,求至少有1天参加抽奖人数超过70的概率;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计该活动持续7天,共有多少名顾客参加抽奖?
参考公式及数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】方程的曲线即为函数的图像,对于函数,有如下结论:①在上单调递减;②函数不存在零点;③ 的最大值为;④若函数和的图像关于原点对称,则由方程确定;其中所有正确的命题序号是( )
A.③④B.②③C.①④D.①②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com