精英家教网 > 高中数学 > 题目详情
根据y=cosx的图象解不等式-
3
2
≤cosx≤
1
2
考点:余弦函数的图象
专题:三角函数的图像与性质
分析:结合余弦函数的图象即可得到结论.
解答: 解:由余弦函数的图象可知,在一个周期[-π,π]内,
满足不等式-
3
2
≤cosx≤
1
2
.对应的范围是
π
3
≤x≤
6
,或-
6
≤x≤-
π
3

则在整个定义域上不等式的解为
π
3
+2kπ≤x≤
6
+2kπ,或2kπ-
6
≤x≤2kπ-
π
3
,k∈Z,
故不等式的解集为[
π
3
+2kπ,
6
+2kπ]∪[2kπ-
6
,2kπ-
π
3
]k∈Z,
点评:本题主要考查三角函数对应不等式的求解,利用余弦函数的图象是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三内角A,B,C所对的边分别为a,b,c且a=1,b=
3
,b=2c•cosA,求角A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增等差数列{an}中的a2,a5是函数f(x)=x3-7x+10的两个零点,数列{bn}满足:点(bn,Sn)在直线y=-x+1上,其中Sn是数列{bn}的前n项和.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2cos(-
π
3
+3x)+1的图象的一个对称中心是(  )
A、(
18
,0)
B、(
8
,1)
C、(
11
18
π,0)
D、(
18
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=tanx+log2
1+x
1-x
+1.
(Ⅰ)求f(
1
2
)+f(-
1
2
)的值;
(Ⅱ)若f(sinθ)>f(cosθ),θ为锐角,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2n+2•3n+5n-a能被25整除,求正整数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦距为2
6
的椭圆中心在原点O,短轴的一个端点为(0,
2
)
,点M为直线y=
1
2
x
与该椭圆在第一象限内的交点,平行OM的直线l交椭圆与A,B两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:直线MA,MB与x轴围成的三角形恒为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的外接圆的圆心为O,满足:
CO
=m
CA
+n
CB
,4m+3n=2,且|
CA
|=4
3
,|
CB
|=6,则
CA
CB
=(  )
A、36
B、24
C、24
3
D、12
3

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式
1
x
+
4x
a
≥4在区间[1,2]上恒成立,则实数a的取值范围为(  )
A、(0,
4
3
]
B、(1,
4
3
]
C、[1,
4
3
]
D、[
16
7
4
3
]

查看答案和解析>>

同步练习册答案