£¨ÎÄ£©ÒÑÖªµãP1£¨a1£¬b1£©£¬P2£¨a2£¬b2£©£¬¡­£¬Pn£¨an£¬bn£©£¨nΪÕýÕûÊý£©¶¼ÔÚº¯Êýy=ax£¨a£¾0£¬a¡Ù1£©µÄͼÏóÉÏ£¬ÆäÖÐ{an}ÊÇÒÔ1ΪÊ×Ï2Ϊ¹«²îµÄµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£¬²¢Ö¤Ã÷ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÉèÊýÁÐ{bn}µÄÇ°nÏîµÄºÍSn£¬Çó
lim
n¡ú¡Þ
Sn
Sn+1
£»
£¨3£©ÉèQn£¨an£¬0£©£¬µ±a=
2
3
ʱ£¬ÎÊ¡÷OPnQnµÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³ö×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Ö±½ÓÀûÓö¨Òå¼´¿ÉÇóÊýÁÐ{an}µÄͨÏʽ£¬ÔÙ´úÈëÇó³öÊýÁÐ{bn}µÄͨÏʽ£¬Óö¨Òå¼´¿ÉÖ¤Ã÷ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÏÈÖ±½Ó´úÈ빫ʽÇó³öSnÒÔ¼°
sn
sn+1
µÄ±í´ïʽ£¬ÔÙ·ÖaµÄ²»Í¬È¡ÖµÀ´Çó½áÂÛ¼´¿É£»
£¨3£©ÏÈÕÒµ½¡÷OPnQnµÄÃæ»ýµÄ±í´ïʽ£¬Éè³ö¶ÔÓ¦ÊýÁУ¬ÔÙÀûÓÃÇóÊýÁÐ×î´óÏîµÄ·½·¨Çó³ö¡÷OPnQnµÄÃæ»ýµÄ×î´óÖµ¼´¿É£®
½â´ð£º½â£º£¨1£©an=2n-1£¬£¨n¡ÊN*£©£¬bn=aan=a2n-1£¬
¡à
bn+1
bn
=a2(¶¨Öµ)
£¬
¡àÊýÁÐ{bn}ÊǵȱÈÊýÁУ®
£¨2£©ÒòΪ{bn}ÊǵȱÈÊýÁУ¬ÇÒ¹«±Èa2¡Ù1£¬
¡àSn=
a(1-a2n)
1-a2
£¬
Sn
Sn+1
=
1-a2n
1-a2n+2
£®
µ±0£¼a£¼1ʱ£¬
lim
n¡ú¡Þ
Sn
Sn+1
=1
£»
µ±a£¾1ʱ£¬
lim
n¡ú¡Þ
Sn
Sn+1
=
lim
n¡ú¡Þ
1-a2n
1-a2n+2
=
lim
n¡ú¡Þ
1
a2n
-1
1
a2n
-a2
=
1
a2
£®
Òò´Ë£¬
lim
n¡ú¡Þ
Sn
Sn+1
=
1£¬0£¼a£¼1
1
a2
£¬a£¾1
£®
£¨3£©bn=(
2
3
)2n-1
£¬S¡÷=
1
2
•(2n-1)•(
2
3
)2n-1
£¬
Éècn=
1
2
•(2n-1)•(
2
3
)2n-1
£¬
µ±cn×î´óʱ£¬Ôò
cn¡Ýcn-1
cn¡Ýcn+1
£¬
½âµÃ
n¡Ü2.3
n¡Ý1.3
£¬n¡ÊN*£¬¡àn=2£®
ËùÒÔn=2ʱcnÈ¡µÃ×î´óÖµ
4
9
£¬
Òò´Ë¡÷OPnQnµÄÃæ»ý´æÔÚ×î´óÖµ
4
9
£®
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеĻù´¡ÖªÊ¶£¬ÊýÁÐ×î´óÏîµÄÇ󷨺ÍÊýÁеļ«ÏÞ£®ÖªÊ¶µã½Ï¶à£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨09ÄêÈÕÕÕÖʼìÎÄ£©£¨12·Ö£©

ÒÑÖªµãA£¨1£¬0£©£¬B£¨0£¬1£©ºÍ»¥²»ÏàͬµÄµãP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­£¬Âú×ã

Êǹ«²î²»ÎªÁãµÄµÈ²îÊýÁУ¬ÎªµÈ±ÈÊýÁУ¬OΪ×ø±êÔ­µã£¬ÈôP1ÊÇÏ߶ÎABµÄÖе㡣

   £¨I£©ÇóµÄÖµ£»

   £¨II£©µãÄÜ·ñÔÚͬһÌõÖ±ÏßÉÏ£¿Ö¤Ã÷ÄãµÄ½áÂÛ¡£

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011ÄêÉϺ£Êг¤ÄþÇø¸ß¿¼ÊýѧһģÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

£¨ÎÄ£©ÒÑÖªµãP1£¨a1£¬b1£©£¬P2£¨a2£¬b2£©£¬¡­£¬Pn£¨an£¬bn£©£¨nΪÕýÕûÊý£©¶¼ÔÚº¯Êýy=ax£¨a£¾0£¬a¡Ù1£©µÄͼÏóÉÏ£¬ÆäÖÐ{an}ÊÇÒÔ1ΪÊ×Ï2Ϊ¹«²îµÄµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£¬²¢Ö¤Ã÷ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÉèÊýÁÐ{bn}µÄÇ°nÏîµÄºÍSn£¬Çó£»
£¨3£©ÉèQn£¨an£¬0£©£¬µ±Ê±£¬ÎÊ¡÷OPnQnµÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³ö×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äê¹ã¶«Ê¡¸ß¿¼ÊýѧģÄâ³å´ÌÊÔ¾í£¨¶þ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

£¨ÎÄ£©ÒÑÖªµãP1£¨a1£¬b1£©£¬P2£¨a2£¬b2£©£¬¡­£¬Pn£¨an£¬bn£©£¨nΪÕýÕûÊý£©¶¼ÔÚº¯Êýy=ax£¨a£¾0£¬a¡Ù1£©µÄͼÏóÉÏ£¬ÆäÖÐ{an}ÊÇÒÔ1ΪÊ×Ï2Ϊ¹«²îµÄµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£¬²¢Ö¤Ã÷ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÉèÊýÁÐ{bn}µÄÇ°nÏîµÄºÍSn£¬Çó£»
£¨3£©ÉèQn£¨an£¬0£©£¬µ±Ê±£¬ÎÊ¡÷OPnQnµÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³ö×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011ÄêÉϺ£Êг¤ÄþÇø¸ß¿¼ÊýѧһģÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

£¨ÎÄ£©ÒÑÖªµãP1£¨a1£¬b1£©£¬P2£¨a2£¬b2£©£¬¡­£¬Pn£¨an£¬bn£©£¨nΪÕýÕûÊý£©¶¼ÔÚº¯Êýy=ax£¨a£¾0£¬a¡Ù1£©µÄͼÏóÉÏ£¬ÆäÖÐ{an}ÊÇÒÔ1ΪÊ×Ï2Ϊ¹«²îµÄµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£¬²¢Ö¤Ã÷ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÉèÊýÁÐ{bn}µÄÇ°nÏîµÄºÍSn£¬Çó£»
£¨3£©ÉèQn£¨an£¬0£©£¬µ±Ê±£¬ÎÊ¡÷OPnQnµÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³ö×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸