精英家教网 > 高中数学 > 题目详情
17.若A、B、C、D四人站成一排照相,A、B相邻的排法总数为k,则二项式${({1-\frac{x}{k}})^k}$的展开式中含x2项的系数为$\frac{11}{24}$.

分析 由题意可得:k=${A}_{3}^{3}•{A}_{2}^{2}$=12.再利用$(1-\frac{x}{12})^{12}$的展开式的通项公式即可得出.

解答 解:由题意可得:k=${A}_{3}^{3}•{A}_{2}^{2}$=12.
则$(1-\frac{x}{12})^{12}$的展开式的通项公式:Tr+1=${∁}_{12}^{r}$$(-\frac{x}{12})^{r}$=$(-\frac{1}{12})^{r}$${∁}_{12}^{r}$xr
令r=2,则展开式中含x2项的系数为:$\frac{1}{1{2}^{2}}×\frac{12×11}{2}$=$\frac{11}{24}$.
故答案为:$\frac{11}{24}$.

点评 本题考查了二项式定理的展开式、排列的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为e,则斜率为k的直线与双曲线C的左、右两支都相交的充要条件是(  )
A.k2-e2>1B.k2-e2<1C.e2-k2>1D.e2-k2<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设正数x,y,z满足不等式$\frac{{x}^{2}+{y}^{2}-{z}^{2}}{2xy}$+$\frac{{y}^{2}+{z}^{2}-{x}^{2}}{2yz}$+$\frac{{z}^{2}+{x}^{2}-{y}^{2}}{2zx}$>1,求证:x,y,z是某个三角形的三边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一条直线和直线外三个点最多能确定的平面个数是(  )
A.4B.6C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在直角坐标系中,点A(1,2),点B(3,1)到直线L的距离分别为1和2,则符合条件的直线条数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设偶函数f(x)在(0,+∞)上f'(x)<0,且f(2)=0,则不等式$\frac{f(x)+f(-x)}{x}>0$的解集为(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B出发沿北偏东α的方向追赶渔船乙,刚好用两小时追赶上.
(1)求渔船甲的速度;
(2)求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{{3+\sqrt{5}}}{2}$D.$\frac{{3-\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$f(x)=4cos(4x-\frac{5π}{2})$是(  )
A.周期为π的奇函数B.周期为π的偶函数
C.周期为$\frac{π}{2}$的奇函数D.周期为$\frac{π}{2}$的偶函数

查看答案和解析>>

同步练习册答案