精英家教网 > 高中数学 > 题目详情

已知函数数学公式在(-∞,+∞)总是单调函数,则a的取值范围是________.

a≥1
分析:先求函数的导数,因为函数在(-∞,+∞)上是单调函数,所以在(-∞,+∞)上y′≥0恒成立,再利用一元一次不等式的解得到a的取值范围即可.
解答:函数的导数为y′=x2+2x+a,
∵函数在(-∞,+∞)上是单调函数,
∴在(-∞,+∞)上y′≥0恒成立,
即x2+2x+a≥0恒成立,∴△=4-4a≤0,解得a≥1,
∴实数a的取值范围是a≥1.
故答案为:a≥1.
点评:此题考查学生会利用导函数的正负确定函数的单调区间,掌握函数恒成立时所取的条件,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、(理)已知函数在f(x)=logsin1(x2-6x+5)在(a,+∞)上是减函数,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数在定义域(-∞,4]上为减函数,且f(m-sinx)≤f(
1+2m
-
7
4
+cos2x)
对于任意的x∈R成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数在分别写有2,3,4,5,7,8的六张卡片中任取2张,把卡片上的数字组成一个分数,则所得的分数是最简分数的概率为
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数在R上为奇函数,且当x≥0时,f(x)=x2-2x,则y=f(x)在R上的解析式为
f(x)=
x2-2x,x≥0
-x2-2x,x<0
f(x)=
x2-2x,x≥0
-x2-2x,x<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数在R上可导,且f′(-1)=2,则
lim
△x→0
f(-1-△x)-f(-1)
△x
=(  )

查看答案和解析>>

同步练习册答案