精英家教网 > 高中数学 > 题目详情
(2013•济宁二模)设点P(x,y)到直线x=2的距离与它到定点(1,0)的距离之比为
2
,并记点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设M(-2,0)的,过点M的直线l与曲线C相交于E,F两点,当线段EF的中点落在由四点C1(-1,0),C2(1,0),B1(0,-1),B2(0,1)构成的四边形内(不包括边界)时,求直线l斜率的取值范围.
分析:(I)利用点P(x,y)到直线x=2的距离与它到定点(1,0)的距离之比为
2
,建立方程,化简可得曲线C的方程;
(Ⅱ)设出直线方程代入椭圆方程,利用韦达定理求出G的坐标,判断出G在正方形内,即可求得直线l斜率的取值范围.
解答:解:(I)∵点P(x,y)到直线x=2的距离与它到定点(1,0)的距离之比为
2

|x-2|
(x-1)2+y2
=
2

x2
2
+y2=1

∴曲线C的方程为
x2
2
+y2=1

(Ⅱ)设直线l的方程为y=k(x+2),设E(x1,y1),F(x2,y2),线段EF的中点G(x0,y0),
直线方程代入椭圆方程可得(1+2k2)x2+8k2x+8k2-2=0
由△>0,可得-
2
2
<k<
2
2

∵x1+x2=
-8k2
1+2k2
,∴x0=
-4k2
1+2k2
,y0=
2k
1+2k2

∵x0=
-4k2
1+2k2
≤0,∴点G不可能在y轴的右边
∵直线C1B2,C1B1的方程为y=x+1,y=-x-1
∴点G在正方形内的充要条件为
y0x0+1
y0>-x0-1
,即
2k2+2k-1<0
2k2-2k-1<0

-
3
-1
2
<k<
3
-1
2

综上可知,-
3
-1
2
<k<
3
-1
2
点评:本题考查轨迹方程,考查直线与椭圆的位置关系,考查学生分析解决问题的能力,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•济宁二模)已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y+2=0相切,则该圆的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)将函数y=2cos2x的图象向右平移
π
2
个单位长度,再将所得图象的所有点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到的函数解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)对于平面α和共面的直线m,n,下列命题是真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)定义在(0,
π
2
)上的函数f(x),其导函数是f′(x),且恒有f(x)<f′(x)•tanx成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)设二次函数f(x)=ax2-4x+c(x∈R)的值域为[0,+∞),则
1
c
+
9
a
的最小值为(  )

查看答案和解析>>

同步练习册答案