精英家教网 > 高中数学 > 题目详情
(2013•韶关一模)如图,三棱锥P-ABC中,PB⊥底面ABC于B,∠BCA=90°,PB=CA=2,点E是PC的中点.
(1)求证:侧面PAC⊥平面PBC;
(2)若异面直线AE与PB所成的角为θ,且tanθ=
3
2
2
,求二面角C-AB-E的大小.
分析:(1)利用线面垂直的性质可得PB⊥AC,利用线面垂直的判定即可得出AC⊥平面PBC,利用面面垂直的判定定理即可证明结论;
(2)通过建立空间直角坐标系,利用两条异面直线的方向向量的夹角即可得出BC的长度,进而利用两个平面的法向量的夹角即可得出二面角.
解答:(1)证明:∵PB⊥平面ABC,∴PB⊥AC;
∵∠BCA=90°,∴AC⊥BC;
又∵PB∩BC=B,∴AC⊥平面PBC;
又∵AC∈平面PAC,∴面PAC⊥面PBC
(2)以C为原点,CA、CB所在直线为x,y轴建立空间直角坐标系,设BC=m>0,
则C(0,0,0),A(2,0,0),E(0,
m
2
,1),B(0,m,0),P(0,m,2).
AE
=(-2,
m
2
,1)
PB
=(0,0,-2)
AB
=(-2,m,0)

tanθ=
3
2
2
,得cosθ=
22
11
,由cosθ=
|
AE
PB
|
|
AE
| |
PB
|
=
2
5+
m2
4
4
=
2
20+m2

22
11
=
2
20+m2
,解得m=
2

AE
=(-2,
2
2
,1)
AB
=(-2,
2
,0)

设平面ABE的一个法向量为
n
=(x,y,z),则
n
AE
=-2x+
2
2
y+z=0
n
AB
=-2x+
2
y=0
,取x=1,则y=
2
,z=1,
n
=(1,
2
,1).
取平面ABC的一个法向量
k
=(0,0,1),
cos<
k
n
=
k
n
|
k
| |
n
|
=
1
4
=
1
2
.∴
k
n
>=60°

∴二面角C-AB-E的大小为60°.
点评:本题综合考查了通过建立空间直角坐标系求异面直线的夹角、二面角,线面、面面垂直的判定与性质定理,需要较强的推理能力、计算能力和空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•韶关一模)在实验员进行一项实验中,先后要实施5个程序,其中程度A只能出现在第一步或最后一步,程序C或D实施时必须相邻,请问实验顺序的编排方法共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关一模)如果集合A={x|x2+ax+1=0}中只有一个元素,则a的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关一模)(几何证明选讲选做题)
在直角坐标系xoy中,圆C1的参数方程为
x=cosα
y=1+sinα
(α为参数)在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴的正半轴为极轴)中,圆C2的极坐标方程为ρ=4sinθ,则C1与C2的位置关系是
内切
内切
(在“相交,相离,内切,外切,内含”中选择一个你认为正确的填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关一模)某校为了解高二学生A,B两个学科学习成绩的合格情况是否有关,随机抽取了该年级一次期末考试A,B两个学科的合格人数与不合格人数,得到以下2X2列联表:
A学科合格人数 A学科不合格人数 合计
B学科合格人数 40 20 60
B学科不合格人数 20 30 50
合计 60 50 110
(1)据此表格资料,你认为有多大把握认为“A学科合格”与“B学科合格”有关;
(2)从“A学科合格”的学生中任意抽取2人,记被抽取的2名学生中“B学科合格”的人数为X,求X的数学期望.
附公式与表:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005
K 2.072 2.706 3.841 5.024 6.635 7.879

查看答案和解析>>

同步练习册答案