精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow{{e}_{1}}$=(cosxπ,sinxπ),$\overrightarrow{{e}_{2}}$=(sinxπ,cosxπ)(x∈R)可作为平面向量的一组基底,则x不可能的是(  )
A.$\frac{1}{3}$B.1C.$\frac{5}{4}$D.2

分析 作为基底的向量不共线,从而可得到$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线,从而得到cosxπ•cosxπ-sinxπ•sinxπ≠0,进而得到cosxπ≠±sinxπ,从而判断哪个选项的x值不满足cosxπ≠sinxπ即可得出x不可能的选项.

解答 解:$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$可作为一组基底;
∴$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$不共线;
∴cos2xπ-sin2xπ≠0;
∴cosxπ≠±sinxπ;
∴$xπ≠\frac{π}{4}+kπ$,即$x≠\frac{1}{4}+k$,k∈Z;
显然x不可能为$\frac{5}{4}$.
故选C.

点评 考查向量基底的概念,共线向量的坐标关系,由cosxπ≠±sinxπ能得到x$π≠\frac{π}{4}+kπ$,k∈Z.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)为偶函数,它在[0,+∞)上为减函数,若f(lgx)<f(1),则x的取值范围是(  )
A.($\frac{1}{10}$,1)B.(0,1)∪(1,+∞)C.($\frac{1}{10}$,10)D.$(0,\frac{1}{10})∪(10,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.有3名男生,2名女生,按照不同的要求排队,求不同的排队方法种数.
(1)全体站成一排,其中甲不在最左端,乙不在最右端;
(2)全体站成一排,甲、乙中间必须有1人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{2x+3}{3x}$,数列{an}满足a1=1,an+1=f($\frac{1}{{a}_{n}}$),n∈N*
(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn
(3)令bn=$\frac{1}{{a}_{n-1}{a}_{n}}$ (n≥2),b1=3,Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“对任意x∈R,都有x2≥ln2”的否定为(  )
A.对任意x∈R,都有x2<ln2B.不存在x0=R,使得 ${{x}_{0}}^{2}$<ln2
C.存在x0=R,使得  ${{x}_{0}}^{2}$≥ln2D.存在x0=R,使得  ${{x}_{0}}^{2}$≤ln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=sin(-2x+$\frac{π}{6}$)的单调递增区间是(  )
A.[-$\frac{π}{6}$+2kπ,$\frac{π}{3}$+2kπ](k∈Z)B.$[\frac{π}{3}+2kπ,\frac{5π}{6}+2kπ](k∈Z)$
C.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)D.$[\frac{π}{3}+kπ,\frac{5π}{6}+kπ](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2+2ln(2-x)(a∈R),设曲线y=f(x)在点(1,f(1))处的切线为l,若l与直线x-2y+2=0垂直,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等差数列{an}中且a1+a2=10,a3+a4=26,则过点P(n,an),Q(n+1,an+1)的直线的斜率为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某水池的容积是20m3,向水池注水的水龙头A和水龙头B的流速都是1m3/h,它们在一昼夜内随机开放(0~24小时),水池不溢出水的概率为$\frac{25}{72}$.

查看答案和解析>>

同步练习册答案