精英家教网 > 高中数学 > 题目详情
在正方形中,沿对角线将正方形折成一个直二面角,则点到直线的距离为(     )
A.B.C.D.
C

试题分析:取中点,连结,因为直二面角,所以
,所以的距离为
点评:求解此题还可采用空间向量法,以AC中点为坐标原点,AC为x轴,OB为y轴,OD为z轴建立坐标系,求出点的坐标代入相应公式求解
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是边长为2的菱形,.已知 .

(Ⅰ)证明:
(Ⅱ)若的中点,求三菱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题中正确的是              (填上你认为所有正确的选项)
①空间中三个平面,若,则
②空间中两个平面,若,直线所成角等于直线所成角, 则
.
③球与棱长为正四面体各面都相切,则该球的表面积为
④三棱锥中,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是两个互相垂直的平面,是一对异面直线,下列五个结论:
(1)(2) (3)
(4)  (5)。其中能得到的结论有     (把所有满足条件的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等腰梯形中,的中点.将梯形旋转,得到梯形(如图).

(1)求证:平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,  AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.

(I)证明:MC//平面PAD;
(II)求直线MC与平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是三条不同的直线, 是三个不同的平面,
①若都垂直,则    
②若,则
③若,则   
④若与平面所成的角相等,则
上述命题中的真命题是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在棱长为1的正方体的面对角线上存在一点使得最短,则的最小值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在正方体分别是的中点,在棱上,且

(1)求证:; (2)求二面角的大小.

查看答案和解析>>

同步练习册答案