分析 (1)推导出SB⊥AD,SA⊥SB,由此能证明SB⊥平面SAD.
(2)以O为原点,OA,OE,OS所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角D-SC-B的余弦值.
解答 证明:(1)∵平面SAB⊥底面ABCD,面SAB∩平面ABCD=AB,
DA⊥AB,DA?面ABCD,
∴DA⊥平面SAB,SB?平面SAB,∴SB⊥AD,
又SA=SB=$\sqrt{2}$,AB=2,∴SA⊥SB,SA∩AD=A,
∴SB⊥平面SAD.
解:(2)过点S作SO⊥AB于O,则SO⊥底面ABCD,
过O作OE∥AD,
以O为原点,OA,OE,OS所在直线为x,y,z轴,建立空间直角坐标系,
则A(1,0,0),B(-1,0,0),C(-1,3,0),D(1,1,0),S(0,0,1),
∴$\overrightarrow{SD}$=(1,1,-1),$\overrightarrow{DC}$=(-2,2,0),
设平面SCD的一个法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{SD}•\overrightarrow{n}=x+y-z=0}\\{\overrightarrow{DC}•\overrightarrow{n}=-2x+2y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,2),
设平面SBC的一个法向量为$\overrightarrow{m}$=(a,b,c),
$\overrightarrow{SB}$=(-1,0,-1),$\overrightarrow{BC}$=(0,3,0),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{SB}=-a-c=0}\\{\overrightarrow{m}•\overrightarrow{BC}=3b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,0,-1),
cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{1-2}{\sqrt{6}•\sqrt{2}}$=-$\frac{\sqrt{3}}{6}$,
由图形得二面角D-SC-B的平面角是钝角,
∴二面角D-SC-B的余弦值为-$\frac{\sqrt{3}}{6}$.
点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
P(K2≥K) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
A. | 有99%以上的把握认为“爱好该项运动与性别有关” | |
B. | 有99%以上的把握认为“爱好该项运动与性别无关” | |
C. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” | |
D. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com