精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在矩形中,,点的中点,将沿折起到的位置,使二面角是直二面角.

1证明:

2求二面角的余弦值.

【答案】1证明见解析;2.

【解析】

试题分析:1由题意可得是等腰直角三角形,所以,因为平面平面,根据面面垂直的性质定理可得平面,可得2所在的直线为轴、轴,过垂直于平面的射线为轴,建立空间直角坐标系,可得平面的法向量为;设平面的法向量为,列方程组赋值求得其坐标,根据向量的夹角公式可得二面角的余弦值.

试题解析:1的中点,是等腰直角三角形,易知,,即.又平面平面,面,又.

2分别以所在的直线为轴、轴,过垂直于平面的射线为轴,建立空间直角坐标系,则.

设平面的法向量为;平面的法向量为.

二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且

(1)若函数在区间上是减函数,求实数的取值范围;

(2)设函数,当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂以千克/小时的速度匀速生产某种产品(生产条件要求),每一小时可获得的利润是元.

(1)要使生产该产品2小时获得的利润不低于1500元,求的取值范围;

(2) 要使生产480千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为左、右顶点,为其右焦点,是椭圆上异于的动点,且的最小值为-2

1求椭圆的标准方程;

2若过左焦点的直线交椭圆两点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的损坏,可见部分如下:

试着根据表中的信息解答下列问题:

(Ⅰ)求全班的学生人数及分数在[70,80)之间的频数;

(Ⅱ)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80)和[80,90)分数段的试卷中抽取7份进行分析,再从中任选2人进行交流,求交流的学生中,成绩位于[70,80)分数的人恰有一人被抽到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】英州育才中学某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分別到气象局与市医院抄录了月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料(表):

日期

昼夜温差

就诊人数()

该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.

(1)求选取的组数据恰好是相邻两个月的概率;

(2)求选取的是月与月的两组数据,请根据月份的数据,求出关于的线性回归方程

其中回归系数公式,,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如下列联表:

做不到科学用眼

能做到科学用眼

合计

45

10

55

30

15

45

合计

75

25

100

(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数,试求随机变量的分布列和数学期望;

(2)若在犯错误的概率不超过的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.

附:独立性检验统计量,其中.

独立性检验临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示

1若从第345组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第345组各抽取多少名志愿者?

21的条件下,该市决定在第34组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10名学生中,男生有x名,现从10名学生中任选6人去参加某项活动:①至少有1名女生;②5名男生,1名女生;③3名男生,3名女生.若要使①为必然事件,②为不可能事件,③为随机事件,则x( )

A.5B.6C.34D.56

查看答案和解析>>

同步练习册答案