精英家教网 > 高中数学 > 题目详情
△ABC为锐角三角形,内角A,B,C的对边分别为a,b,c,已知a2+b2=6abcosC,且sin2C=2sinAsinB.
(Ⅰ)求角C的大小;
(Ⅱ)若△ABC的面积S=
5
3
4
,求sinA+sinB
的值.
分析:(Ⅰ)利用余弦定理列出关系式,将已知第一个等式代入表示出cosC的值,第二个等式利用正弦定理化简,代入表示出的cosC求出cosC的值,即可求出角C的大小;
(Ⅱ)利用三角形的面积公式列出关系式,将sinC及已知面积代入求出ab的值,进而确定出c的值,求出a2+b2的值,利用完全平方公式求出a+b的值,原式利用正弦定理化简,将a+b,c及sinC的值代入即可求出值.
解答:解:(Ⅰ)在△ABC中,a2+b2-c2=2abcosC,
将a2+b2=6abcosC代入得:6abcosC-c2=2abcosC,
∴cosC=
c2
4ab

∵sin2C=2sinAsinB,
∴利用正弦定理化简得:c2=2ab,
∴cosC=
2ab
4ab
=
1
2

∵C为三角形内角,
∴C=
π
3

(Ⅱ)由题意得:S=
1
2
absinC=
1
2
ab•
3
2
=
5
3
4
,即ab=5,
∴c2=2ab=10,即c=
10

∴a2+b2=6abcosC=15,
∴(a+b)2=a2+b2+2ab=15+10=25,即a+b=5,
由正弦定理得:
a
sinA
=
b
sinB
=
c
sinC
,即sinA=
a
c
sinC,sinB=
b
c
sinC,
则sinA+sinB=
a+b
c
sinC=
5
10
×
3
2
=
30
4
点评:此题考查了正弦、余弦定理,三角形的面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xoy中,
 j 
分别是与x、y轴正方向同向的单位向量,若△ABC为锐角三角形,且
AB
=2
i
+
j
  ,
AC
=3
i
 +k
j
,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC为锐角三角形,若角θ的终边过点P(sinA-cosB,cosA-sinC),则y=
sinθ
|sinθ|
+
cosθ
|cosθ|
+
tanθ
|tanθ|
(  )
A、1B、-1C、3D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)已知函数f(x)的导函数的图象如图所示,若△ABC为锐角三角形,则一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头一模)半径为R的圆周上任取A、B、C三点,则三角形ABC为锐角三角形的概率为(  )

查看答案和解析>>

同步练习册答案