精英家教网 > 高中数学 > 题目详情
设抛物线y2=2x的焦点为F,过点M(
3
,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,|BF|=2,则
|BC|
|AC|
=(  )
分析:过A、B作抛物线准线的垂线,垂足分别为D、E,连结AD、BE、AF.设A(x1,y1)、B(x2,y2),直线AB的方程为y=k(x-
3
),将AB方程与抛物线方程消去y得到关于x的一元二次方程,由韦达定理算出x1x2=3.利用抛物线的定义得|BF|=|BE|=x2+
1
2
=2,算出x2=
3
2
,从而得出x1=2,可得|AD|=x1+
1
2
=
5
2
.最后在△CAD中根据平行线的性质加以计算,即可得到
|BC|
|AC|
的值.
解答:解:抛物线y2=2x的焦点为F(
1
2
,0),准线方程为x=-
1
2

分别过A、B作准线的垂线,垂足分别为D、E,连结AD、BE、AF.
设A(x1,y1)、B(x2,y2),直线AB的方程为y=k(x-
3
),与y2=2x消去y,
得k2x2-(2+2
3
k2)x+3k2=0,所以x1+x2=
2+2
3
k2
k2
,x1x2=3,
∵|BF|=2,∴根据抛物线的定义,得|BF|=|BE|=x2+
1
2
=2,解得x2=
3
2

由此可得x1=
3
x2
=2,所以|AD|=x1+
1
2
=
5
2

∵△CAD中,BE∥AD,∴
|BC|
|AC|
=
|BE|
|AD|
=
2
5
2
=
4
5

故选:A
点评:本题给出抛物线与经过M(
3
,0)的直线相交,求截得的线段之间的比值.着重考查了抛物线的定义与简单几何性质、直线与抛物线的位置关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线y2=2x的焦点为F,过点M(
3
,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比
S△BCF
S△ACF
=(  )
A、
4
5
B、
2
3
C、
4
7
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=2x的焦点为F,以P(
9
2
,0)
为圆心,PF长为半径作一圆,与抛物线在x轴上方交于M,N,则|MF|+|NF|的值为(  )
A、8
B、18
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=2x的焦点为F,过点M(
3
 , 0)
的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,|BF|=2,则△BCF与△ACF的面积之比
S△BCF
S△ACF
=
4
5
4
5

查看答案和解析>>

科目:高中数学 来源:2010年河南省漯河市舞阳一高高考数学三模试卷(理科)(解析版) 题型:选择题

设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案