精英家教网 > 高中数学 > 题目详情
定义域为R的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,若x∈[-4,-2]时,f(x)≥
1
18
(
3
t
-t)
恒成立,则实数t的取值范围是
 
分析:设x∈[-4,-2],则x+4∈[0,2],代入[0,2]时f(x)的解析式,再根据f(x+4)=9f(x)求出在[-4,-2]上f(x)的解析式,将f(x)≥
1
18
(
3
t
-t)
恒成立转化成
3
t
-t
1
2
(x2+6x+8)min=-
1
2
即可,求出t的取值范围即可.
解答:解:设x∈[-4,-2],则x+4∈[0,2]
f(x+4)=(x+4)2-2(x+4)=x2+6x+8=3f(x+2)=9f(x)
即f(x)=
1
9
(x2+6x+8)
∵f(x)=
1
9
(x2+6x+8)≥
1
18
(
3
t
-t)
恒成立
3
t
-t
1
2
(x2+6x+8)min=-
1
2

解得:t∈[-
3
2
,0)∪[2,+∞)
故答案为:[-
3
2
,0)∪[2,+∞)
点评:本题主要考查了函数最值的应用,以及函数解析式的求解及常用方法,本题解题的关键将区间[-4,-2]转化到区间[0,2],易错在直接代入解析式计算,没有弄清在每一段的函数解析式不一样.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
b-
2
x
 
2
x+1
 
+a
是奇函数
(1)a+b=
3
3

(2)若函数g(x)=f(
2x+1
)+f(k-x)
有两个零点,则k的取值范围是
(-1,-
1
2
(-1,-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b2x+1+a
是奇函数.
(1)求f(x)的解析式;
(2)用定义证明f(x)为R上的减函数;
(3)若对任意的t∈[-1,1],不等式f(2k-4t)+f(3•2t-k-1)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+12x+1+a
是奇函数,则a=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)=
1
|x-2|
,(x≠2)
1,(x=2)
,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则x1+x2+x3+x4+x5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数.
(Ⅰ)求实数a值;
(Ⅱ)判断并证明该函数在定义域R上的单调性.

查看答案和解析>>

同步练习册答案