精英家教网 > 高中数学 > 题目详情
13.已知在Rt△ABC中,∠C=90°,∠A≠∠B,设sinB=n,当∠B是最小的内角时,n的取值范围是(  )
A.0<n<$\frac{\sqrt{2}}{2}$B.0<n<$\frac{1}{2}$C.0<n<$\frac{\sqrt{3}}{3}$D.0<n<$\frac{\sqrt{3}}{2}$

分析 利用已知条件判断B的范围,然后推出n的范围即可.

解答 解:在Rt△ABC中,∠C=90°,∠A≠∠B,设sinB=n,当∠B是最小的内角时,
可得B∈(0°,45°),∴sinB∈(0,$\frac{\sqrt{2}}{2}$),即0<n<$\frac{\sqrt{2}}{2}$.
故选:A.

点评 本题考查三角形的解法,三角函数的值的范围,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设A是△ABC的一个内角,且sinA=$\frac{\sqrt{3}}{2}$,那么角A等于(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.kπ+$\frac{π}{3}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.圆C1:x2+y2+2x+4y-4=0与圆C2:(x-2)2+(y-2)2=4的位置关系为(  )
A.相交B.内切C.外切D.外离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.直线l的极坐标方程为:$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=10,若点P为曲线C:$\left\{\begin{array}{l}{x=2cosα}\\{y=2sinα+2}\end{array}\right.$(α为参数)上的动点,其中参数α∈[0,2π].
(1)试写出直线l的直角坐标方程及曲线C的普通方程;
(2)求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设数列{an}是公差d<0的等差数列,Sn为其前n项和,若S6=5a1+10d,则Sn取最大值时,n=5或6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)与函数g(x)=$\frac{2}{1-\sqrt{1-x}}$是相等的函数,则函数f(x)的定义域是(  )
A.(-∞,1)B.(-∞,0)∪(0,1]C.(-∞,0)∪(0,1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列计算正确的是(  )
A.(a32=a9B.log26-log23=1C.a${\;}^{-\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=0D.log3(-4)2=2log3(-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合M={x|(x+2)(x-2)≤0},N={x|x-1<0},则M∩N=(  )
A.{x|-2≤x<1}B.{x|-2≤x≤1}C.{x|-2<x≤1}D.{x|x<-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设3,x,5成等差数列,则x为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案