精英家教网 > 高中数学 > 题目详情
(2012•四川)如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为(  )
分析:由题意求出AP的距离,然后求出∠AOP,即可求解A、P两点间的球面距离.
解答:解:半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,所以CD⊥平面AOB,
因为∠BOP=60°,所以△OPB为正三角形,P到BO的距离为PE=
3
2
R
,E为BQ的中点,AE=
R2+(
R
2
)
2
-2AO•OEcos45°
=
5-2
2
4
R

AP=
(
3
2
R)
2
+(
5-2
2
4
R)
2
=
8-2
2
2
R

AP2=OP2+OA2-2OP•OAcos∠AOP,
8-2
2
4
R2=R2+R2-2R2cos∠AOP

cos∠AOP=
2
4
,∠AOP=arccos
2
4

A、P两点间的球面距离为Rarccos
2
4

故选A.
点评:本题考查反三角函数的运用,球面距离及相关计算,考查计算能力以及空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•四川)如图,在正方体ABCD-A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是
90°
90°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)如图,动点M到两定点A(-1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB,设动点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设直线y=-2x+m与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求
|PR||PQ|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)如图,在三棱锥P-ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,点P在平面ABC内的射影O在AB上.
(Ⅰ)求直线PC与平面ABC所成的角的大小;
(Ⅱ)求二面角B-AP-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)如图,动点M与两定点A(-1,0)、B(1,0)构成△MAB,且直线MA、MB的斜率之积为4,设动点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设直线y=x+m(m>0)与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求
|PR||PQ|
的取值范围.

查看答案和解析>>

同步练习册答案