精英家教网 > 高中数学 > 题目详情
20.设x为实数,[x]为不超过实数x的最大整数,如[2.66]=2,[-2.66]=-3.记{x}=x-[x],则{x}的取值范围为[0,1).现定义无穷数列{an}如下:a1={a},当an≠0时,an+1=$\{\frac{1}{a_n}\}$;当an=0时,an+1=0.当$\frac{1}{3}<a≤\frac{1}{2}$时,对任意的自然数n都有an=a,则实数a的值为$\sqrt{2}-1$.

分析 通过$\frac{1}{3}<a≤\frac{1}{2}$计算数列{an}的前几项,结合对任意的自然数n都有an=a,从而得出关于a的方程,即可求出实数a的值.

解答 解:∵$\frac{1}{3}<a≤\frac{1}{2}$,∴2≤a<3,
∴a1={a}=a,
a2={$\frac{1}{a}$}=$\frac{1}{a}$-2,
∵当$\frac{1}{3}<a≤\frac{1}{2}$时,对任意的自然数n都有an=a,
∴a=$\frac{1}{a}$-2,即a2+2a-1=0,
∴a=$\sqrt{2}-1$或a=-$\sqrt{2}-1$(不合2≤a<3,舍去),
故答案为:$\sqrt{2}-1$.

点评 本题考查的是取整函数、数列的函数特性.解答此题的关键是计算数列的前几项,进而得到关于未知数的方程,利用方程思想求解.注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前n项和为sn,且S2=10,S5=55,则过点P(n,an),Q(n+2,an+2)(n∈N*)的直线的斜率为(  )
A.4B.$\frac{1}{4}$C.-4D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:“?x∈[-5,0],a≥ex”,命题q:“?x∈R,x2+4x+a=0”,若“p∧q”是真命题,则实数a的取值范围是(  )
A.[e,4]B.[1,4]C.(4,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.天气预报报导在今后的三天中,每一天下雨的概率均为60%,这三天中恰有两天下雨的概率是(  )
A.0.432B.0.6C.0.8D.0.288

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知sinα=-$\frac{3}{5}$,且α为第四象限角,求$tan(α-\frac{π}{4})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanα=-2,则$\frac{3sinα+cosα}{sinα-cosα}$的值等于$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若(ax+2b)6的展开式中x2与x3的系数之比为3:4,其中a>0,b≠0
(1)当a=1时,求(ax+2b)6的展开式中二项式系数最大的项;
(2)令$F(a,b)=\frac{{{b^3}+16}}{a}$,求F(a,b)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合M={f(x)|当x∈[0,4]时,|f(x)|≤2恒成立}
(1)判断函数g(x)=$\frac{{{2^x}-1}}{{{2^x}+1}}({x∈[{0,4}]})$是否属于集合M,说明理由;
(2)已知f(x)=x2+bx+c(c≥2)满足f(x)∈M,求b和c的值;
(3)已知f(x)是定义在区间[-4,4]上的奇函数,f(4)=0且对任何实数x1,x2∈[-4,4]都有|f(x1)-f(x2)|≤|x1-x2|,求证:f(x)∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},
(1)当a=10时,求A∩B,A∪B;
(2)求能使A⊆B成立的a的取值范围.

查看答案和解析>>

同步练习册答案