精英家教网 > 高中数学 > 题目详情
5.半径为4的圆中,一扇形的弧所对的圆心角为45°,则这个扇形的面积为2π.

分析 先把圆心角化为弧度数,代入扇形的面积公式:S=$\frac{1}{2}$α•r2进行计算即可.

解答 解:圆心角为45°,即$\frac{π}{4}$,
S扇形=$\frac{1}{2}×\frac{π}{4}$×42=2π.
故答案为:2π.

点评 本题考查了扇形面积的计算,属于基础题,掌握扇形的计算公式是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.若函数f(x)为定义在R上的奇函数,且x>0时,f(x)=lg(x+1)
(1)求f(x)的解析式,并画出大致图象;
(2)若对于任意t∈R,不等式f(t2-2t)+f(k-2t2)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=log${\;}_{\frac{1}{3}}$(x2-9)的定义域为(-∞,-3)∪(3,+∞),单调递增区间为
(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知角α的终边上一点P(1,-2),则$\frac{sinα+2cosα}{sinα-cosα}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.现有A,B,C三种产品需要检测,产品数量如表所示:
产品ABC
数量240240360
已知采用分层抽样的方法从以上产品中共抽取了7件.
(I)求三种产品分别抽取的件数;
(Ⅱ)已知抽取的A,B,C三种产品中,一等品分别有1件,2件,2件.现再从已抽取的A,B,C三种产品中各抽取1件,求3件产品都是一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A是圆上一定点,在圆上其他位置上任取一点B,则AB的长度小于半径的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果三角形三个顶点分别是O(0,0),A(0,6),B(-8,0),则它的内切圆方程为(x+2)2+(y-2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出如下四个命题:
①若“p且q”为假命题,则p、q均为假命题;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≥1;
④在△ABC中,“A>B”是“sinA>sinB”的充要条件.
其中不正确的命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1).
(1)求F(x)=f(x)+g(x)的定义域,
(2)设a=2,函数f(x)的定义域为[3,63],求f(x)的最值,
(3)求使f(x)-g(x)>0的x的取值范围.

查看答案和解析>>

同步练习册答案