精英家教网 > 高中数学 > 题目详情

【题目】给出如下四个命题:①若“”为假命题,则均为假命题;②命题“若,则”的否命题为“若,则”; ③“,则”的否定是“,则”;④在中,“”是“”的充要条件.其中正确的命题的个数是( )

A. 1B. 2C. 3D. 4

【答案】C

【解析】

根据复合命题真假的判定即可判断①;根据否命题可判断②;根据含有量词的否定可判断③;根据正弦定理及充分必要条件可判断④。

根据复合命题真假的判断,若“”为假命题,则至少有一个为假命题,所以①错误;

根据否命题定义,命题“若,则”的否命题为“若,则”为真命题,所以②正确;

根据含有量词的否定,“”的否定是“”,所以③正确;

根据正弦定理,“”且“”,所以④正确。

综上,正确的有②③④

所以选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了整顿食品的安全卫生,食品监督部门对某食品厂生产甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克).

规定:当食品中的有害微量元素的含量在时为一等品,在为二等品,20以上为劣质品.

1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个,求甲的一等品数与乙的一等品数相等的概率;

2)每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元,根据上表统计得到甲、乙两种食品为一等品、二等品、劣质品的频率,分别估计这两种食品为一等品、二等品、劣质品的概率,若分别从甲、乙食品中各抽取1件,设这两件食品给该厂带来的盈利为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,().

(1)若函数有极值,求的值;

(2)若函数在区间上为减函数,求的取值范围;

(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为抛物线上异于原点的任意一点过点的直线交抛物线于另一点轴的正半轴于点且有.当点的横坐标为3为正三角形.

(1)求抛物线的方程

(2)若直线和抛物线有且只有一个公共点试问直线是否过定点若过定点求出定点坐标若不过定点请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有关于x的一元二次方程

a是从0,1,2三个数中任取的一个数,b是从0,1,2,3四个数中任取的一个数,求上述方程有实根的概率;

a是从区间任取的一个数,b是从区间任取的一个数,求上述方程有实数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用74胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.

1)求乙以41获胜的概率;

2)求甲获胜且比赛局数多于5局的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数).

(I)讨论函数的单调性;

(II)若上的恒成立,求的范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)若函数有极小值,求该极小值的取值范围.

查看答案和解析>>

同步练习册答案