精英家教网 > 高中数学 > 题目详情
20.求满足{x|x2+1=0}⊆A⊆{x|x2-4=0}的集合A的个数.

分析 化简{x|x2+1=0}=∅,{x|x2-4=0}={-2,2};从而可得∅⊆A⊆{-2,2},从而解得.

解答 解:∵{x|x2+1=0}=∅,{x|x2-4=0}={-2,2};
∴∅⊆A⊆{-2,2},
∴A=∅,{-2},{2},{-2,2};
故集合A的个数为4.

点评 本题考查了集合的化简与集合包含关系的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知正三棱柱的底面边长为2$\sqrt{3}$,侧棱长为4,则该正三棱柱的外接球的体积为(  )
A.$\frac{64\sqrt{2}}{3}$πB.32πC.$\frac{64\sqrt{3}}{3}$πD.$\frac{128}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=sinxcosx-1的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a,b∈R+且a+b=3,则ab2的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在空间中,已知动点P的横、竖坐标均为0,则动点P的轨迹为(  )
A.平面xOzB.y轴C.x轴D.以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各组向量共面的是(  )
A.$\overrightarrow a=(1,0,-1),\overrightarrow b=(1,1,0),\overrightarrow c=(0,1,1)$B.$\overrightarrow a=(1,0,0),\overrightarrow b=(0,1,-1),\overrightarrow c=(0,0,1)$
C.$\overrightarrow a=(1,1,1),\overrightarrow b=(1,-1,0),\overrightarrow c=(1,0,1)$D.$\overrightarrow a=(1,1,0),\overrightarrow b=(1,0,1),\overrightarrow c=(0,1,1)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若AB=1,BC=2,$CA=\sqrt{5}$,则$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}+\overrightarrow{CA}•\overrightarrow{AB}$的值是-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知动圆C与直线x+y+2=0相切于点A(0,-2),圆C被x轴所截得的弦长为2,则满足条件的所有圆C的半径之积是10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,该程序运行后输出的结果是(  )
A.1023B.1024C.511D.512

查看答案和解析>>

同步练习册答案