精英家教网 > 高中数学 > 题目详情

(9)设平面向量a1,a2,a3的和a1+a2+a3=0.如果平面各量b1,b2,b3满足│bi│=2│ai│,且ai的顺时针旋转后与bi同向,其中i-1,2,3,则

(A)-b1+b2+b3=0      (B)b1-b2+b3=0

(C)b1+b2-b3=0       (D)b1+b2+b3=0

 

D

解析:∵Equation.3

∴不妨设Equation.3=1,Equation.3=-

=-,则

,故选D

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.(矩阵与变换)
已知矩阵
12
2a
的属于特征值b的一个特征向量为
1
1
,求实数a、b的值.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,已知点A(1,-2)在曲线
x=2pt2
y=2pt
(t为参数,p为正常数),求p的值.
D.(不等式选讲)
设a1,a2,a3均为正数,且a1+a2+a3=1,求证:
1
a1
+
1
a2
+
1
a3
≥9

查看答案和解析>>

同步练习册答案