精英家教网 > 高中数学 > 题目详情

【题目】已知ABC的顶点坐标分别是A7,﹣3),B2,﹣8),C51),

1)求AB垂直平分线的方程(化为一般式);

2)求ABC外接圆的方程;

【答案】1x+y+10;(2)(x22+y+3225

【解析】

1)求出AB的斜率和AB的中点坐标,利用点斜式求其垂直平分线方程;

2)即求经过A7,﹣3),B2,﹣8),C51)三点的圆的方程,可用待定系数法.

1A7,﹣3),B2,﹣8),

AB的中点坐标为(),

所以AB垂直平分线的方程为y=﹣(x

x+y+10

2)设圆的方程为(xa2+yb2r2

,联立解方程组得a2b=﹣3r5

所以圆的方程为(x22+y+3225

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正四棱锥中,底面正方形的边长为1,侧棱长为2,则异面直线所成角的大小为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线为

)若直线的斜率为,求函数的单调区间.

)若函数是区间上的单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)若曲线和曲线有三个公共点,求以这三个点为顶点的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点为椭圆上的动点,若的最大值和最小值分别为.

(I)求椭圆的方程

(Ⅱ)设不过原点的直线与椭圆 交于两点,若直线的斜率依次成等比数列,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年发现这一规律的.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,这是我国数学史上的一个伟大成就.如图所示,在杨辉三角中,去除所有为1的项,依次构成数列,则此数列前135项的和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正六棱锥的底面边长为,高为.现从该棱锥的个顶点中随机选取个点构成三角形,设随机变量表示所得三角形的面积.

(1)求概率的值;

(2)求的分布列,并求其数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐,下表是西南地区某大学近五年的录取平均分与省一本线对比表:

年份

2014

2015

2016

2017

2018

年份代码

1

2

3

4

5

省一本线

505

500

525

500

530

录取平均分533

534

566

547

580

录取平均分与省一本线分差y

28

34

41

47

50

(1)根据上表数据可知,yt之间存在线性相关关系,求y关于t的线性回归方程;

(2)据以往数据可知,该大学每年的录取分数X服从正态分布,其中为当年该大学的录取平均分,假设2019年该省一本线为520分,李华2019年高考考了569分,他很喜欢这所大学,想第一志愿填报,请利用概率与统计知识,给李华一个合理的建议.(第一志愿录取可能性低于,则建议谨慎报考)

参考公式:.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在 (单位:克)中,其频率分布直方图如图所示.

(1)按分层抽样的方法从质量落在 的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;

(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:

A.所有蜜柚均以40元/千克收购;

B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

同步练习册答案