精英家教网 > 高中数学 > 题目详情
已知抛物线C的方程为:y2=4x,直线l过(-2,1)且斜率为k≥0,当k为何值时,直线l与抛物线C(1)只有一个公共点,(2)有两个公共点.
(1)当k=0时,直线l的方程为y=1,与抛物线C的方程联立
y=1
y2=4x
,解得(
1
4
,1)
,此时直线l与抛物线C只有一个公共点.
k>0时,直线l的方程为y-1=k(x+2),联立
y-1=k(x+2)
y2=4x
,化为k2x2+(4k2+2k-4)x+(2k+1)2=0,
当直线l与抛物线相切时,△=(4k2+2k-4)2-4k2(2k+1)2=0,化为2k2+k-1=0,解得k=-1或
1
2

即当k=-1或
1
2
时,直线l与抛物线C只有一个公共点.
综上可知:当k=0,-1或
1
2
时,直线l与抛物线C只有一个公共点.
(2)k>0时,直线l的方程为y-1=k(x+2),联立
y-1=k(x+2)
y2=4x
,化为k2x2+(4k2+2k-4)x+(2k+1)2=0,
当直线l与抛物线相交时,△=(4k2+2k-4)2-4k2(2k+1)2>0,化为2k2+k-1<0,解得-1<k<
1
2

故当-1<k<
1
2
且k≠0时,直线l与抛物线相交于两个交点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,, BE平分∠ABC交AC于点E, 点D在AB上,
(1)求证:AC是△BDE的外接圆的切线;
(2)若,求EC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(A题)已知点P是圆x2+y2=4上一动点,直线l是圆在P点处的切线,动抛物线以直线l为准线且恒经过定点A(-1,0)和B(1,0),则抛物线焦点F的轨迹为(  )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于直线L:y=kx+1是否存在这样的实数,使得L与双曲线C:3x2-y2=1的交点A,B关于直线y=ax(a为常数)对称?若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C以双曲线
x2
3
-y2=1
的焦点为顶点,以双曲线的顶点为焦点.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于点M,N两点(M,N不是左右顶点),且以线段MN为直径的圆过椭圆C左顶点A,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(x,0)
b
=(1,y)
,且(
a
+
3
b
)⊥(
a
-
3
b
)

(1)求点P(x,y)的轨迹C的方程,且画出轨迹C的草图;
(2)若直线l:y=kx+m(k≠0)与上述曲线C交于不同的两点A、B,求实数k和m所满足的条件;
(3)在(2)的条件下,若另有定点D(0,-1),使|AD|=|BD|,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,A1、A2、F1、F2分别是双曲线C:
x2
9
-
y2
16
=1的左、右顶点和左、右焦点,M(x0、y0)是双曲线C上任意一点,直线MA2与动直线l:x=
9
x0
相交于点N.
(1)求点N的轨迹E的方程;
(2)点B为曲线E上第一象限内的一点,连接F1B交曲线E于另一点D,记四边形A1A2BD对角线的交点为G,证明:点G在定直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过椭圆
x2
2
+y2=1
的左焦点F1的直线l交椭圆于A、B两点.
(1)求
AO
AF1
的范围;
(2)若
OA
OB
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(几何证明选讲选做题)如图3,在中,,若
,则的长为_______.

查看答案和解析>>

同步练习册答案