精英家教网 > 高中数学 > 题目详情

设C:y=x2(x>0)上的点为P0(x0,y0),过P0作曲线C的切线与x轴交于Q1,过Q1作平行于y轴的直线与曲线C交于P1(x1,y1),然后再过P1作曲线C的切线与x轴交于Q2,过Q2作平行于y轴的直线与曲线C交于P2(x2,y2),依次类推,作出以下各点:Q3,P3,…,Pn,Qn+1,….已知x0=2,设Pn(xn,yn)(n∈N).

(1)设xn=f(n),求f(n)的表达式;

(2)求g(n)=

(3)设Sn=[g(n)-4]log2f(n).若n>2,求证:-1≤<0.

答案:
解析:

  解  (1)由y=x2得:=2x.

  设C:直线PnQn+1方程y-=2xn(x-xn),令y=0,得xn+1=xnxnxn

  即xn+1xn,得xn=f(n)=2()n=()n-1(n=0,1,2,3,…).

  (2)g(n)=2+1++…+()n-1=4-()n-1

  (3)Sn=[g(n)-4]log2f(n)=-()n-1log2()n-1=(n-1)()n-1

  令Tn+1=-2+0+1×+…+(n-1)×()n-1.(1)则

  (2)

  (1)-(2),得Tn+1=-1+0+1×+1×()2+…+1×()n-1-(n-1)×()n

  中间n-1项求和,整理得

Tn+1=-,又Tn+1-Tn=-

  所以数列{Tn}是单调递增数列.

  因为n>2,所以当n=3时,取得最小值T3=-1,所以-1≤<0.


练习册系列答案
相关习题

科目:高中数学 来源:高中数学全解题库(国标苏教版·必修4、必修5) 苏教版 题型:044

P0(x0,y0)为曲线C:y=x2(x>0)上的点,过P0作曲线C的切线与x轴交于点Q1,过Ql作平行于y轴的直线与曲线C交于点P1(xl,y1),然后再过P1作曲线C的切线交x轴于点Q2,过Q2作平行于y轴的直线与曲线C交于点P2(x2,y2),依此类推,作出以下各点:P0,Q1P1,Q2P2,Q3,…,Pn,Qn+l,….已知x0=2,设Pn坐标为(xn,yn)(n∈N).

(1)求出过点P0的切线的方程;

(2)设xnf(n),求f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源:广东仲元中学2007届高三数学质量检测(一) 题型:044

解答题:解答应写出文字说明、证明过程或演算步骤

过点P(1,0)作曲线C:y=x2(x∈(0,+∞))的切线,切点为Q1,设点Q1在x轴上的投影为P1(即过点Q1作x轴的垂线,垂足为P1),又过点P1作曲线C的切线,切点为Q2,设点Q2在x轴上的投影为P2,…,依次下去,得到一系列点Q1,Q2,Q3,…,Qn,…,设点Qn的横坐标为an,n∈N*

(1)

求数列{an}的通项公式;

(2)

比较an的大小,并证明你的结论;

(3)

,数列{bn}的前n项和为Sn,求证:对任意的正整数n均有≤Sn<2.

查看答案和解析>>

科目:高中数学 来源:安徽省池州市2012届高三上学期第一次模试考试数学理科试题 题型:044

设有抛物线C:y=x2,A(1,1)为抛物线C上的一定点,B为抛物线C上异于A的一动点,直线l为抛物线C在A处的切线,点P(2,y0)为直线l上一定点,过点P作直线x轴垂直的直线交直线AB于点Q,交抛物线C于点M,设

(1)求直线l的方程;

(2)试求λ1-λ2的值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江考试院抽学校高三11月抽测测试理科数学试卷(解析版) 题型:解答题

如图,已知曲线C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取线段OQ的中点A1,过A1作x轴的垂线交曲线C于P1,过P1作y轴的垂线交RQ于B1,记a1为矩形A1P1B1Q的面积.分别取线段OA1,P1B1的中点A2,A3,过A2,A3分别作x轴的垂线交曲线C于P2,P3,过P2,P3分别作y轴的垂线交A1P1,RB1于B2,B3,记a2为两个矩形A2P2B2 A1与矩形A3P3B3B1的面积之和.以此类推,记an为2n1个矩形面积之和,从而得数列{an},设这个数列的前n项和为Sn

(I)求a2与an

(Ⅱ)求Sn,并证明Sn

 

查看答案和解析>>

同步练习册答案