精英家教网 > 高中数学 > 题目详情
3.已知定义在R上的函数f(x)=$\frac{a-{2}^{x}}{1+{2}^{x}}$的图象关于原点对称.
(1)求a的值;
(2)判断f(x)的单调性,并用单调性定义证明.

分析 (1)根据奇函数的性质f(0)=0,可求出a的值,
(2)根据函数的单调性的定义证明即可.

解答 解:(1)∵f(x)是定义在R上的奇函数,由f(0)=0可得a=1.
(2)由(1)得f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$=$\frac{2}{1+{2}^{x}}$-1在R上单调递减,
证明:设x2>x1>0,由于f(x2)-f(x1)=$\frac{{2}^{{x}_{2}+1}-{2}^{{x}_{1}+1}}{(1+{2}^{{x}_{1}})(1+{2}^{{x}_{2}})}$,
∵x2>x1
∴f(x2)-f(x1)<0,即f(x2)<f(x1),
∴函数f(x)(0,+∞)上单调性递减,
∵f(x)为奇函数,
∴f(x)在R上为减函数.

点评 本题主要考查函数的奇偶性的应用,利用函数的单调性的定义证明函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.三位七进制数表示的最大的十进制数是342.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中表示同一函数的是(  )
A.y=$\sqrt{{x}^{4}}$与y=($\sqrt{x}$)4B.y=$\root{3}{{x}^{3}}$与y=$\frac{{x}^{2}}{x}$
C.y=$\sqrt{{x}^{2}+x}$ 与y=$\sqrt{x}$•$\sqrt{x+1}$D.y=$\frac{1}{|x|}$与y=$\frac{1}{\sqrt{{x}^{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,AB=BC,∠B=90°,M为BC的中点,BN⊥AM,且交AC于点N,用解析法证明:∠CMN=∠BMA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C1:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.
(1)E,F是椭圆C上的两个动点,A(2,$\sqrt{2}$),如果直线AE的斜率与AF的斜率互为相反数,证明;直线EF的斜率为定值,并求出此定值;
(2)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点P,求证:直线l过定点,并求出定点坐标;
(3)椭圆C与y轴的两个交点分别为A、B(A点在B点的上方),直线y=kx+4与椭圆C交于不同的两点M、N,直线y=1与直线BM相交与点G,求证;A,G,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正项等差数列{an}的前n项和为Sn,已知am-1+am+1-am2=-3,S2m-1=57,则m=(  )
A.38B.20C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.圆x2+y2=16的切线与x轴、y轴的正半轴分别交于A、B两点,则|AB|最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\left\{\begin{array}{l}|lgx|,0<x≤10\\-\frac{1}{2}x+6,x>10\end{array}\right.$.
(1)画出函数的大致图象,指出其单调区间;
(2)若方程f(x)=k(k为常数)有三个不相等的实数根,求k的取值范围;
(3)若0<a<b<10,且f(a)=f(b),求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列椭圆的焦点坐标:
(1)$\frac{{x}^{2}}{100}+\frac{{y}^{2}}{36}=1$;
(2)2x2+y2=8.

查看答案和解析>>

同步练习册答案