精英家教网 > 高中数学 > 题目详情

【题目】若定义在上的函数满足:对任意的,当时,都有,则称是“非減函数”.

(1)若是“非減函数”,求的取值范围;

(2)若为周期函数,且为“非减函数”,证明是常值函数;

(3)设恒大于零,是定义在R上、恒大于零的周期函数,的最大值。函数。证明:“是周期函数”的充要条件“是常值函数”.

【答案】(1);(2)见解析;(3)见解析

【解析】

1)直接由求得的取值范围;

2)用反正法证明,如果函数不是常函数,即函数可能是单调递增函数、或者部分单调递增部分常值。利用函数的周期性和不递减的性质,即可证明结论与假设矛盾,即假设不成立,是常值函数。

3)首先证明充分性,是很显然的,的周期性与一样。然后再证明必要性,利用(2)的结论即可得证。

1)由

,得

的取值范围是

2)假设不是常值函数,并且周期为。令,且存在一个使得。由于的性质可知,,且

因为为周期函数,所以,这与前面的结论矛盾,所以假设不成立,即是常值函数

3)充分性证明:当是常值函数时,令,即,因为是周期函数,所以也是周期函数。

必要性证明:当是周期函数时,令周期为,即,则,又因为是周期函数,所以,即可得到,所以是周期函数,由(2)的结论可知,是常值函数。

综上所述,是周期函数的充要条件是是常值函数。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=e|lnx|(e为自然对数的底数).若x1≠x2且f(x1)=f(x2),则下列结论一定不成立的是(
A.x2f(x1)>1
B.x2f(x1)=1
C.x2f(x1)<1
D.x2f(x1)<x1f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,且a1 , a3 , a13成等比数列,若a1=1,Sn是数列{an}前n项的和,则 (n∈N+)的最小值为(
A.4
B.3
C.2 ﹣2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=1,AD= ,P矩形内的一点,且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: =1(a>b>0)的中心在原点,焦点在x轴上,焦距为2,且与椭圆x2+ =1有相同离心率,直线l:y=kx+m与椭圆C交于不同的A,B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆C上存在点Q,满足 ,(O为坐标原点),求实数λ取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的准线与轴交于,抛物线的焦点,以为焦点,离心率的椭圆与抛物线的一个交点为;自引直线交抛物线于两个不同的点,设.

(1)求抛物线的方程及椭圆的方程;

(2),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 E:
(I)求曲线 E的离心率及标准方程;
(II)设 M(x0 , y0)是曲线 E上的任意一点,过原点作⊙M:(x﹣x02+(y﹣y02=8的两条切线,分别交曲线 E于点 P、Q.
①若直线OP,OQ的斜率存在分别为k1 , k2 , 求证:k1k2=﹣
②试问OP2+OQ2是否为定值.若是求出这个定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四面体P﹣ABC中,PA=4,AC=2 ,PB=BC=2 ,PA⊥平面PBC,则四面体P﹣ABC的外接球半径为(
A.2
B.2
C.4
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)设.①,则满足什么条件时,曲线x=0处总有相同的切线?②当a=1时,求函数单调区间

(2)若集合为空集ab的最大值

查看答案和解析>>

同步练习册答案