精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=-x+b的图象过点(2,1),若不等式f(x)≥x2+x-5的解集为A,且A⊆(-∞,a].
(1)求a的取值范围;
(2)解不等式$\frac{{{x^2}-(a+3)x+2a+3}}{f(x)}$<1.

分析 (1)先求出b的值,再解不等式即可得到a的范围.
(2)分类讨论即可求出不等式的解集.

解答 解:(1)依题意,可得b=3f(x)≥x2+x-5即-x+3≥x2+x-5,即x2+2x-8≤0,
∴A=[-4,2]⊆(-∞,a],
∴a≥2
∴a的范围为[2,+∞).                             
(2)$\frac{{{x^2}-(a+3)x+2a+3}}{f(x)}<1$即 $\frac{{{x^2}-(a+2)x+2a}}{x-3}>0$
由(1)知 a≥2,
当a=2时,不等式的解集为(3,+∞);
当2<a<3时,不等式的解集为(2,a)∪(3,+∞);
当a=3时,不等式的解集为(2,3)∪(3,+∞);
当a>3,不等式的解集为(2,3)∪(a,+∞).

点评 本题主要考查了不等式的解法,关键是分类讨论,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知集合A={0,1},B={1,2,3},则A∩B={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-ax,a∈R.
(Ⅰ)若函数f(x)在x=0处的切线过点(1,0),求a的值;
(Ⅱ)若函数f(x)在(-1,+∞)上不存在零点,求a的取值范围;
(Ⅲ)若a=1,设函数$g(x)=\frac{1}{f(x)+ax}+\frac{4x}{{{e^x}-f(x)+4}}$,求证:当x≥0时,g(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在某样本的频率分布直方图中,共有7个小长方形,若第三个小长方形的面积为其他6个小长方形的面积和的$\frac{1}{4}$,且样本容量为100,则第三组数据的频数为(  )
A.25B.0.2C.0.25D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)由下表定义:
x25314
f(x)12345
若a0=1,an+1=f(an),n=0,1,2,…,则a2016=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果关于x的方程x2-2(1-m)x+m2=0有两实数根α,β,则α+β的取值范围为(  )
A.α+β≥$\frac{1}{2}$B.α+β≤$\frac{1}{2}$C.α+β≥1D.α+β≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知四面体的四个顶点S(0,6,4),A(3,5,3),B(-2,11,-5),C(1,-1,4),求从顶点S向底面ABC所引高的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.矩形ABCD的顶点A,B在直线y=2x+m上,C,D在抛物线y2=4x上,该矩形的外接圆方程为x2+y2-x-4y-t=0.
(1)求矩形ABCD对角线交点M的坐标;
(2)求此矩形的长,并求m,t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案