精英家教网 > 高中数学 > 题目详情
14.已知角α终边上一点($\frac{5}{13}$,-$\frac{12}{13}$),那么sinα=-$\frac{12}{13}$,cosα=$\frac{5}{13}$,tanα=-$\frac{12}{5}$.

分析 由条件利用任意角的三角函数的定义,求得sinα、cosα、tanα的值.

解答 解:∵角α终边上一点($\frac{5}{13}$,-$\frac{12}{13}$),∴x=$\frac{5}{13}$,y=-$\frac{12}{13}$,r=1,
那么sinα=$\frac{y}{r}$=-$\frac{12}{13}$,cosα=$\frac{x}{r}$=$\frac{5}{13}$,tanα=$\frac{y}{x}$=-$\frac{12}{5}$,
故答案为:-$\frac{12}{13}$;$\frac{5}{12}$;-$\frac{12}{5}$.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.三角形的三个内角的度数之比为1:2:3,其最小内角的弧度数为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,以|F1F2|为直径的圆与双曲线交于A,B,C,D四点,且四边形ABCD的一条对角线所在的直线的斜率为$\frac{\sqrt{3}}{3}$,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.试在14和224之间插入3个数,使5个数成等比数列,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,直四棱柱ABCD-A1B1C1D1底面是梯形,AB∥CD,DD1=AB=$\frac{1}{2}$CD,P,Q分别为棱CC1,C1D1的中点,求证:AC∥平面BPQ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明.对于任意两个向量$\overrightarrow{a}$,$\overrightarrow{b}$都有||$\overrightarrow{a}$|-|$\overrightarrow{b}$||≤|$\overrightarrow{a}+\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图.在底面为正方形的四棱锥P-ABCD中,PA⊥平面ABCD,则图中互相垂直的平面有5对.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,M,N,P分别是AB,BC,CA边上靠近A,B,C的三等分点,O是△ABC平面上的任意一点,若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,则$\overrightarrow{OM}$+$\overrightarrow{ON}$+$\overrightarrow{OP}$=$\frac{1}{3}\overrightarrow{{e}_{1}}$$-\frac{1}{2}\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={y|y=sinx},B={y|y=2x},则A∩B=(  )
A.(-1,0)B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

同步练习册答案