精英家教网 > 高中数学 > 题目详情

【题目】已知四边形为直角梯形,中点,交于点,沿将四边形折起,连接

(1)求证:平面;

(2)若平面平面

(I)求二面角的平面角的大小;

(II)线段上是否存在点,使平面,若存在,求出的值,若不存在,请说明理由.

【答案】(1)见解析;(2)见解析;(3).

【解析】【试题分析】(1)依据题设条件,运用线面平行的判定定理推证;(2)依据题设建立空间直角坐标系,运用向量的坐标形式进行分析探求。

(1)证明:连结,则中点,设中点,连结,则,且

由已知

,所以四边形为平行四边形.

,即

平面平面

所以平面

(2)由已知为边长为2的正方形,

因为平面平面,又

两两垂直.

为原点,分别为轴,轴,轴建立空间直角坐标系,

(I)可求平面法向量为

平面法向量为

所以二面角的平面角的大小为

(II)假设线段上是否存在点,使平面,设),

平面,则,可求

所以线段上存在点,使平面,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2015男篮亚锦赛决赛阶段,中国男篮以9连胜的不败战绩赢得第28届亚锦赛冠军,同时拿到亚洲唯一1张直通里约奥运会的入场券,赛后,中国男篮主力易建联荣膺本届亚锦赛(最有价值球员),下表是易建联在这9场比赛中投篮的统计数据.

注:(1)表中表示出手次命中次;

(2)(真实得分率)是衡量球员进攻的效率,其计算公式为:

(1)从上述9场比赛中随机选择一场,求易建联在该场比赛中超过50%的概率;

(2)从上述9场比赛中随机选择一场,求易建联在该场比赛中至少有一场超过60%的概率;

(3)用来表示易建联某场的得分,用来表示中国队该场的总分,画出散点图如图所示,请根据散点图判断之间是否具有线性相关关系?结合实际简单说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个学生在一次竞赛中要回答道题是这样产生的道物理题中随机抽取道化学题中随机抽取道生物题中随机抽取.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为化学题的编号为生物题的编号为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lm,平面αβ,下列命题正确的是 (  )

A. lβlααβ

B. lβmβlαmααβ

C. lmlαmβαβ

D. lβmβlαmαlmMαβ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2015高考天津,文20】已知函数

I)求的单调区间;

II)设曲线轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;

III)若方程有两个正实数根,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.

1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;

2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a元.

(1)试求a的值;

(2)公司在试销过程中进行了市场调查,发现销售量y(件)与每件售价x(元)满足关系y=-10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x(元)之间的函数解析式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2014福建,文22】已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为.

(1)的值及函数的极值;

(2)证明:当时,

(3)证明:对任意给定的正数,总存在,使得当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点且离心率为

(Ⅰ)求椭圆的方程

(Ⅱ)设是椭圆上的点直线为坐标原点)的斜率之积为.若动点满足,试探究是否存在两个定点使得为定值若存在的坐标若不存在请说明理由

查看答案和解析>>

同步练习册答案