精英家教网 > 高中数学 > 题目详情
(2012•许昌一模)已知a>0,则f(x)=lg(ax2-bx-c)的值域为R的充要条件是(  )
分析:已知a>0,则f(x)=lg(ax2-bx-c)的值域为R,就是g(x)=ax2+ax+1的值域为[0,+∞),本题中函数f(x)=lg(ax2-bx-c)的值域为R故内层函数的定义域不是全体实数,可由△≥0保障 f(x)=lg(ax2-bx-c)的值域为R定义域不是全体实数,从而求出a的范围;
解答:解:a>0,则f(x)=lg(ax2-bx-c)的值域为R,令g(x)=ax2-bx-c,
∴g(x)=ax2-bx-c的值域为[0,+∞),
∴△=(-b)2-4a(-c)=b2+4ac≥0,
说明方程ax2-bx-c=0,有实数根,
与x轴有交点,也即?x0∈R,ax02-bx0-c≤0,
若?x0∈R,ax02≤bx0+c,说明存在x0使得g(x)=ax2-bx-c<0,又a>0,开口向上,
g(x)与x轴有交点,可得△≥0,
所以f(x)=lg(ax2-bx-c)的值域为R,
故f(x)=lg(ax2-bx-c)的值域为R的充要条件是:?x0∈R,ax02≤bx0+c,
故选B;
点评:本题考查二次函数的性质,难点在于对g(x)=ax2-bx-c的值域为[0,+∞)的理解与应用,常与函数f(x)=lg(ax2-bx-c)的定义域为R相混淆,也是易错点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌一模)设x,y满足
x-ay≤2
x-y≥-1
2x+y≥4
时,则z=x+y既有最大值也有最小值,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌一模)已知(1-2x)8=a0+a1x+a2x2+…a8x8,则a1+2a2+3a3+…8a8=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌一模)设函数f(x)=sin2(x+
π
4
)-cos2(x+
π
4
)(x∈R),则函数f(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌一模)已知四棱锥P-ABCD中,底面ABCD是直角梯形,∠BAD=∠CBA=90°,面 PAB⊥面ABCD,PA=PB=AB=AD=2,BC=1.
(Ⅰ)求证:PD⊥AC;
(Ⅱ)若点M是棱PD的中点.求二面角M-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌一模)已知函数f(x)=lnx-x+ax2
(I)试确定实数a的取值范围,使得函数f(x)在定义域内是单调函数;
(II)证明:
n
k=2
(
1
k
-ln
1
k
)
n-1
2(n+1)

查看答案和解析>>

同步练习册答案