精英家教网 > 高中数学 > 题目详情

【题目】设数列的前项和为,且.

(1)求证:数列为等比数列;

2)设数列的前项和为,求证: 为定值;

3)判断数列中是否存在三项成等差数列,并证明你的结论.

【答案】(1)见解析(2)见解析(3)不存在

【解析】试题分析:(1)依据题设探求出,再运用等比数列的定义进行推证;(2)借助等比数列的前项和公式分别求出 ,然后再求其比值;(3)假设存在满足题设条件的三项,然后运用假设进行分析推证,找出矛盾,从而断定不存在假设的三项:

解:(1)当时, ,解得.

时, ,即.

因为,所以,从而数列是以2为首项,2为公比的等比数列,所以.

(2)因为,所以

故数列是以4为首项,4为公比的等比数列,

从而

所以.

(3)假设中存在第项成等差数列,

,即.

因为,且,所以.

因为

所以,故矛盾,

所以数列中不存在三项成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a>3且a≠ ,命题p:指数函数f(x)=(2a﹣6)x在R上单调递减,命题q:关于x的方程x2﹣3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b∈R,若a2+b2﹣ab=1,则ab的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,B1 C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂每日生产一种大型产品1件,每件产品的投入成本为2000元.产品质量为一等品的概率为,二等品的概率为,每件一等品的出厂价为10000元,每件二等品的出厂价为8000元.若产品质量不能达到一等品或二等品,除成本不能收回外,没生产一件产品还会带来1000元的损失.

(1)求在连续生产3天中,恰有一天生产的两件产品都为一等品的的概率;

(2)已知该厂某日生产的2件产品中有一件为一等品,求另一件也为一等品的概率;

(3)求该厂每日生产该种产品所获得的利润(元)的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且离心率为.

(1)求椭圆的方程;

(2)设点轴上的射影为点,过点的直线与椭圆相交于 两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数),.

(1)若的极值点,且直线分别与函数的图象交于,求两点间的最短距离;

(2)若时,函数的图象恒在的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下

等级

1

2

3

4

5

频率

0.05

m

0.15

0.35

n


(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足Sn= n2+ n(n∈N*),数列{bn}是首项为4的正项等比数列,且2b2 , b3﹣3,b2+2成等差数列. (Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=anbn(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案