精英家教网 > 高中数学 > 题目详情
17.等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn),均在函数y=2x+r(r为常数)的图象上.
(1)求r的值;
(2)记bn=$\frac{n+1}{4{a}_{n}}$(n∈N+)求数列{bn}的前n项和Tn

分析 (1)由题意可得,Sn=2n+r,运用n=1时,a1=S1,n>1时,an=Sn-Sn-1,即可得到r=-1;
(2)求得bn=(n+1)•($\frac{1}{2}$)n+1,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.

解答 解:(1)由题意可得,Sn=2n+r,
n=1时,a1=S1=2+r,
n>1时,an=Sn-Sn-1=2n-2n-1=2n-1
对n=1也成立,可得2+r=1,
解得r=-1;
(2)bn=$\frac{n+1}{4{a}_{n}}$=(n+1)•($\frac{1}{2}$)n+1
前n项和Tn=2•$\frac{1}{4}$+3•$\frac{1}{8}$+…+(n+1)•($\frac{1}{2}$)n+1
$\frac{1}{2}$Tn=2•$\frac{1}{8}$+3•$\frac{1}{16}$+…+(n+1)•($\frac{1}{2}$)n+2
两式相减可得,$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{8}$+$\frac{1}{16}$+…+($\frac{1}{2}$)n+1-(n+1)•($\frac{1}{2}$)n+2
=$\frac{1}{2}$+$\frac{\frac{1}{8}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(n+1)•($\frac{1}{2}$)n+2
化简可得前n项和Tn=$\frac{3}{2}$-$\frac{n+3}{{2}^{n+1}}$.

点评 本题考查等比数列的通项和求和公式的运用,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知sinα+cosα=-$\frac{1}{5}$.
(1)求sin($\frac{π}{2}$+α)cos($\frac{π}{2}$-α)的值;
(2)若$\frac{π}{2}$<α<π,求$\frac{1}{sin(π-α)}$+$\frac{1}{cos(π-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l:2x-y-1=0,动点P(x,y)在直线l上.
(1)若A(0,4),B(-2,0),求|PA|+|PB|的最小值并求此时点P的坐标;
(2)若A(0,4),C(4,1),求|PC|-|PA|的最大值并求此时点P的坐际.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求值:
(1)sin6°sin42°sin66°sin78°;
(2)$\frac{sin50°(1+\sqrt{3}tan10°)-cos20°}{cos80°\sqrt{1-cos20°}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若直线x-2y=1,2x+y-7=0,ax-4y=5交于一点,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若f(x)=ln(e3x+1)+$\frac{3}{2}$ax是偶函数,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知tanα=$\frac{2}{5}$,tanβ=$\frac{3}{7}$,求tan(α+β)和tan(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系XOY中,圆C:(x-a)2+y2=a2,圆心为C,圆C与直线l1:y=-x的一个交点的横坐标为2.
(1)求圆C的标准方程;
(2)直线l2与l1垂直,且与圆C交于不同两点A、B,若S△ABC=2,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x(x+1)+1,
(1)求函数f(x)的解析式.
(2)写出函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案