【题目】如图1,在中,分别是上的点,且,将沿折起到的位置,使,如图2.
(1)求证:平面;
(2)若是的中点,求与平面所成角的大小;
(3)线段上是否存在点,使平面与平面垂直?说明理由.
【答案】(1)证明见解析;(2);(3)不存在,理由见解析.
【解析】
(1)证明垂直平面内两条相交直线即可;
(2)建立空间直角坐标系,用坐标表示点与向量,求出平面的法向量,利用向量夹角公式,即可得与平面所成角.
(3)假设存在点,设其坐标为,则,求出平面法向量,假设平面与平面垂直,则,得出的值,从而得出结论.
(1),,是平面内的两条相交直线,
平面,
又平面,
,
又,是平面内的两条相交直线,
平面.
(2)如图建系,
则,,,,
∴,,
设平面的一个法向量为
则 ∴ ∴
∴取,得,
又∵,
∴,与平面所成角
∴,,
∴与平面所成角的大小.
(3)设线段上存在点,设点坐标为,则
则,
设平面法向量为,
则,
∴取,得.
假设平面与平面垂直,
则,∴,
∴不存在线段上存在点,使平面与平面垂直
科目:高中数学 来源: 题型:
【题目】如图所示,在平行四边形中,点是边的中点,将沿折起,使点到达点的位置,且
(1)求证; 平面平面;
(2)若平面和平面的交线为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于任意的,若数列同时满足下列两个条件,则称数列具有“性质”.①;②存在实数使得.
(1)数列中,,判断是否具有“性质”.
(2)若各项为正数的等比数列的前项和为,且,证明:数列具有“性质”,并指出的取值范围.
(3)若数列的通项公式,对于任意的,数列具有“性质”,且对满足条件的的最小值,求整数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知中心在原点,顶点A1、A2在x轴上,其渐近线方程是,双曲线过点
(1)求双曲线方程
(2)动直线经过的重心G,与双曲线交于不同的两点M、N,问:是否存在直线,使G平分线段MN,证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数在其图象上存在不同的两点,,其坐标满足条件: 的最大值为0,则称为“柯西函数”,则下列函数:① :②:③:④.
其中为“柯西函数”的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M过两点A(1,﹣1),B(﹣1,1),且圆心M在x+y﹣2=0上,
(Ⅰ)求圆M的方程;
(Ⅱ)设P是直线x+y+2=0上的动点.PC,PD是圆M的两条切线,C,D为切点,求四边形PCMD面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前用外卖网点餐的人越来越多.现对大众等餐所需时间情况进行随机调查,并将所得数据绘制成频率分布直方图(如图).其中等餐所需时间的范围是,样本数据分组为, ,,,.
(1)求直方图中的值;
(2)某同学在某外卖网点了一份披萨,试估计他等餐时间不多于小时的概率;
(3)现有名学生都分别通过外卖网进行了点餐,这名学生中等餐所需时间少于小时的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com