精英家教网 > 高中数学 > 题目详情
15.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,若AP=1,AD=$\sqrt{3}$,三棱锥P-ABD的体积V=$\frac{\sqrt{3}}{4}$,则A到平面PBC的距离是$\frac{3\sqrt{13}}{13}$.

分析 通过AP=1,AD=$\sqrt{3}$,三棱锥P-ABD的体积V=$\frac{\sqrt{3}}{4}$,求出AB,作AH⊥PB角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.

解答 解:∵AP=1,AD=$\sqrt{3}$,三棱锥P-ABD的体积V=$\frac{\sqrt{3}}{4}$,
∴V=$\frac{1}{6}$PA•AB•AD=$\frac{\sqrt{3}}{6}$AB=$\frac{\sqrt{3}}{4}$,
∴AB=$\frac{3}{2}$,
作AH⊥PB交PB于H,
由题意可知BC⊥平面PAB,
∴BC⊥AH,
故AH⊥平面PBC.
又AH=$\frac{PA•AB}{PB}$=$\frac{3\sqrt{13}}{13}$.
A到平面PBC的距离$\frac{3\sqrt{13}}{13}$.
故答案为:$\frac{3\sqrt{13}}{13}$.

点评 本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知a+b+c=0,求证:a3+a2c+b2c-abc+b3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在长方体ABCD-A1B1C1D1中,AD=1,AA1=AB=2,点E是线段AB的中点,点M为线段D1C上的动点.,
(Ⅰ)当点M是D1C的中点时,求证直线BM∥平面D1DE;
(Ⅱ)若点M是靠近C点的四等分点,求直线EM与平面D1DE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上函数f(x)满足f(1)=1,f′(x)<2,则满足f(x)>2x-1的x的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,三棱锥P-ABC中,BC⊥平面PAB.PA=PB=AB=BC=6,点M,N分别为PB,BC的中点.
(Ⅰ)求证:AM⊥平面PBC;
(Ⅱ)E在线段AC上的点,且AM∥平面PNE.
①确定点E的位置;
②求直线PE与平面PAB所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)判断平面BEG与平面ACH的位置关系.并证明你的结论;
(2)若正方体棱长为1,求三棱锥F-BEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx,g(x)=xe-x
(1)当x∈R时,求函数f(x)的单调递减区间;
(2)若对任意x1∈[1,3],x2∈[0,$\frac{π}{2}$],不等式g(x1)+a+3>f(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a为常数,函数f(x)=xlnx-$\frac{1}{2}$ax2
(1)当a=0时,求函数f(x)的最小值;
(2)若f(x)有两个极值点x1,x2(x1<x2
①求实数a的取值范围;
②求证:x1x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.
(1)求证:A1B∥面ADC1;          
(2)求直线B1C1与平面ADC1所成角的余弦值.

查看答案和解析>>

同步练习册答案