精英家教网 > 高中数学 > 题目详情
已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的离心率e=
3
2
,短轴长为2,点A(x1,y1),B(x2,y2)是椭圆上的两点,
m
=(
x1
b
y1
a
)
n
=(
x2
b
y2
a
)
,且
m
n
=0

(1)求椭圆方程;
(2)若直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率;
(3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(1)椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的离心率e=
3
2
,短轴长为2,
a2-b2
a
=
3
2
2b=2

∴a=2,b=1,
∴椭圆方程为
y2
4
+x2=1

(2)设AB:y=kx+
3
,代入椭圆方程可得(k2+4)x2+2
3
kx-1=0,
∴x1+x2=-
2
3
k
k2+4
,x1x2=-
1
k2+4

m
n
=0

∴4x1x2+y1y2=0,
∴(k2+4)x1x2+
3
k(x1+x2)+3=0,
∴-1-
6k2
k2+4
+3=0,
∴k=±
2

(3)①当直线AB斜率不存在时,即x1=x2,y1=-y2
m
n
=0
,则y12=4x12
又A(x1,y1)在椭圆上,∴x12+
y12
4
=1

|x1|=
2
2
|y1|=
2

∴S=
1
2
|x1|•2|y1|
=1
∴三角形的面积为定值1;
②当直线AB斜率存在时,设AB的方程为y=kx+b,代入椭圆方程,可得(k2+4)x2+2kbx+b2-4=0,
得到x1+x2=-
2kb
k2+4
,x1x2=
b2-4
k2+4

∵4x1x2+y1y2=0,
∴(k2+4)x1x2+kb(x1+x2)+b2=0,
∴(k2+4)
b2-4
k2+4
+kb(-
2kb
k2+4
)+b2=0,
∴2b2-k2=4,
∴S=
|b|
1+k2
|AB|=
1
2
|b|
(x1+x2)2-4x1x2
=
|b|
4k2-4b2+16
k2+4
=
4b2
2|b|
=1,
∴三角形的面积为定值1.
综上,三角形的面积为定值1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知A1(-3,0)A2(3,0)P(x,y)M(
x2-9
,0),若向量
A1P
λ
OM
A2P
满足(
OM
)2=3
A1P
A2P

(1)求P点的轨迹方程,并判断P点的轨迹是怎样的曲线;
(2)过点A1且斜率为1的直线与(1)中的曲线相交的另一点为B,能否在直线x=-9上找一点C,使△A1BC为正三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦点分别为F1、F2,过F1作直线交椭圆于P、Q两点,△F2PQ的周长为4
3

(1)若椭圆的离心率e=
3
3
,求椭圆的方程;
(2)若M为椭圆上一点,
MF1
MF2
=1,求△MF1F2的面积最大时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直线l:x-y+9=0上任取一点M,过M作以F1(-3,0),F2(3,0)为焦点的椭圆,当M在什么位置时,所作椭圆长轴最短?并求此椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点为O(0,0),焦点F(0,1)
(Ⅰ)求抛物线C的方程;
(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x-2于M、N两点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直角坐标平面内点A(x,y)到点F1(-1,0)与点F2(1,0)的距离之和为4.
(1)试求点A的轨迹M的方程;
(2)若斜率为
1
2
的直线l与轨迹M交于C、D两点,点P(1,
3
2
)
为轨迹M上一点,记直线PC的斜率为k1,直线PD的斜率为k2,试问:k1+k2是否为定值?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知O为坐标原点,F是抛物线E:y2=4x的焦点.
(Ⅰ)过F作直线l交抛物线E于P,Q两点,求
OP
OQ
的值;
(Ⅱ)过点T(t,0)作两条互相垂直的直线分别交抛物线E于A,B,C,D四点,且M,N分别为线段AB,CD的中点,求△TMN的面积最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)设直线l交曲线C于A,B两点,线段AB的中点为D(2,-1),求直线l的一般式方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=2px(p>0)上横坐标为1的点M到抛物线C焦点F的距离|MF|=2.
(1)试求抛物线C的标准方程;
(2)若直线l与抛物线C相交所得的弦的中点为(2,1),试求直线l的方程.

查看答案和解析>>

同步练习册答案