¾«Ó¢¼Ò½ÌÍøÐÄÀíѧ¼ÒÑо¿Ä³Î»Ñ§ÉúµÄѧϰÇé¿ö·¢ÏÖ£ºÈôÕâλѧÉú¸ÕѧÍêµÄ֪ʶ´æÁôÁ¿Îª1£¬ÔòxÌìºóµÄ´æÁôÁ¿y1=
4
x+4
£»ÈôÔÚt£¨t£¾0£©Ììʱ½øÐеÚÒ»´Î¸´Ï°£¬Ôò´ËʱÕâËƺõ´æÁôÁ¿±Èδ¸´Ï°Çé¿öÏÂÔö¼ÓÒ»±¶£¨¸´Ï°µÄʱ¼äºöÂÔ²»¼Æ£©£¬Æäºó´æÁôÁ¿y2Ëæʱ¼ä±ä»¯µÄÇúÏßÇ¡ºÃΪֱÏßµÄÒ»²¿·Ö£¬ÆäбÂÊΪ
a
(t+4)2
(a£¼0)
£¬´æÁôÁ¿Ëæʱ¼ä±ä»¯µÄÇúÏßÈçͼËùʾ£®µ±½øÐеÚÒ»´Î¸´Ï°ºóµÄ´æÁôÁ¿Óë²»¸´Ï°µÄ´æÁôÁ¿Ïà²î×î´óʱ£¬Ôò³Æ´Ëʱ¿ÌΪ¡°¶þ´Î¸´Ï°×î¼Ñʱ»úµã¡±
£¨1£©Èôa=-1£¬t=5£¬Çó¡°¶þ´Î¸´Ï°×î¼Ñʱ»úµã¡±£»
£¨2£©Èô³öÏÖÁË¡°¶þ´Î¸´Ï°×î¼Ñʱ»úµã¡±£¬ÇóaµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©µÚÒ»´Î¸´Ï°ºóµÄ´æÁôÁ¿ÊÇy2£¬²»¸´Ï°Ê±µÄ´æÁôÁ¿Îªy1£¬¸´Ï°ºóÓë²»¸´Ï°µÄ´æÁôÁ¿²îÊÇy=y2-y1£»°Ña¡¢t´úÈ룬ÕûÀí¼´µÃËùÇó£»
£¨2£©Çó³ö֪ʶÁô´æÁ¿º¯Êýy=
a
(t+4)2
(x-t)
+
8
t+4
-
4
x+4
£¨t£¾4£¬ÇÒt¡¢aÊdz£Êý£¬xÊÇ×Ô±äÁ¿£©£¬yÈ¡×î´óֵʱ¶ÔÓ¦µÄt¡¢aÈ¡Öµ·¶Î§¼´¿É£®
½â´ð£º½â£º£¨1£©ÉèµÚÒ»´Î¸´Ï°ºóµÄ´æÁôÁ¿Óë²»¸´Ï°µÄ´æÁôÁ¿Ö®²îΪy£¬
ÓÉÌâÒ⣬µÚÒ»´Î¸´Ï°ºóµÄ´æÁôÁ¿ÊÇy2=
a
(t+4)2
(x-t)+
8
t+4
(t£¾4)
£¬
²»¸´Ï°µÄ´æÁôÁ¿Îªy1=
4
x+4
£»
¡ày=y2-y1=
a
(t+4)2
(x-t)+
8
t+4
-
4
x+4
(t£¾4)
£»
µ±a=-1£¬t=5ʱ£¬y=
-1
(5+4)2
(x-5)+
8
5+4
-
4
x+4
=
-(x+4)
81
-
4
x+4
+1
¡Ü-2
4
81
+1
=
5
9
£¬
µ±ÇÒ½öµ±x=14ʱȡµÈºÅ£¬
ËùÒÔ¡°¶þ´Î¸´Ï°×î¼Ñʱ»úµã¡±ÎªµÚ14Ì죮
£¨2£©ÖªÊ¶Áô´æÁ¿º¯Êýy=
a
(t+4)2
(x-t)+
8
t+4
-
4
x+4
=-
-a(x+4)
(t+4)2
-
4
x+4
+
8
t+4
-
a(t+4)
(t+4)2

¡Ü-2
-4a
(t+4)2
+
8-a
t+4
£¬
µ±ÇÒ½öµ±
-a(x+4)
(t+4)2
=
4
x+4
¼´x=
2
-a
(t+4)-4
ʱȡµÈºÅ£¬
ÓÉÌâÒâ
2
-a
(t+4)-4£¾t
£¬ËùÒÔ-4£¼a£¼0£®
µãÆÀ£º±¾Ì⿼²éÁ˺¬ÓÐ×Öĸ²ÎÊýµÄº¯ÊýÀàÐ͵ÄÓ¦Óã¬ÌâÄ¿ÖÐÓ¦Óûù±¾²»µÈʽa+b¡Ý2
ab
£¨a£¾0£¬b£¾0£©Çó³ö×îÖµ£¬ÓÐÄѶȣ¬ÊÇ×ÛºÏÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄê½­ËÕÊ¡¸ßÈýÏÂѧÆÚÖÊÁ¿¼ì²âÊýѧÊÔ¾í ÌâÐÍ£º½â´ðÌâ

ÐÄÀíѧ¼ÒÑо¿Ä³Î»Ñ§ÉúµÄѧϰÇé¿ö·¢ÏÖ£ºÈôÕâλѧÉú¸ÕѧÍêµÄ֪ʶ´æÁôÁ¿¼ÇΪ1£¬ÔòÌìºóµÄ´æÁôÁ¿£»ÈôÔÚÌìʱ½øÐеÚÒ»´Î¸´Ï°£¬Ôò´Ëʱ֪ʶ´æÁôÁ¿±Èδ¸´Ï°Çé¿öÏÂÔö¼ÓÒ»±¶£¨¸´Ï°Ê±¼äºöÂÔ²»¼Æ£©£¬Æäºó´æ´¢Á¿Ëæʱ¼ä±ä»¯µÄÇúÏßǡΪֱÏßµÄÒ»²¿·Ö£¬ÆäбÂÊΪ´æÁôÁ¿Ëæʱ¼ä±ä»¯µÄÇúÏßÈçͼËùʾ.µ±½øÐеÚÒ»´Î¸´Ï°ºóµÄ´æÁôÁ¿Óë²»¸´Ï°µÄ´æÁôÁ¿Ïà²î×î´óʱ£¬Ôò³Æ´Ëʱ´Ë¿ÌΪ¡°¶þ´Î¸´Ï°×î¼Ñʱ»úµã¡±.

£¨1£©Èô£¬Çó¡°¶þ´Î×î¼Ñʱ»úµã¡±£»

£¨2£©Èô³öÏÖÁË¡°¶þ´Î¸´Ï°×î¼Ñʱ»úµã¡±£¬ÇóµÄÈ¡Öµ·¶Î§.

 

 

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äê½­ËÕÊ¡ËÕ±±ËÄÊи߿¼Êýѧ¶þÄ£ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÐÄÀíѧ¼ÒÑо¿Ä³Î»Ñ§ÉúµÄѧϰÇé¿ö·¢ÏÖ£ºÈôÕâλѧÉú¸ÕѧÍêµÄ֪ʶ´æÁôÁ¿Îª1£¬Ôòx ÌìºóµÄ´æÁôÁ¿£»ÈôÔÚt£¨t£¾0£©Ììʱ½øÐеÚÒ»´Î¸´Ï°£¬Ôò´ËʱÕâËƺõ´æÁôÁ¿±Èδ¸´Ï°Çé¿öÏÂÔö¼ÓÒ»±¶£¨¸´Ï°µÄʱ¼äºöÂÔ²»¼Æ£©£¬Æäºó´æÁôÁ¿y2Ëæʱ¼ä±ä»¯µÄÇúÏßÇ¡ºÃΪֱÏßµÄÒ»²¿·Ö£¬ÆäбÂÊΪ£¬´æÁôÁ¿Ëæʱ¼ä±ä»¯µÄÇúÏßÈçͼËùʾ£®µ±½øÐеÚÒ»´Î¸´Ï°ºóµÄ´æÁôÁ¿Óë²»¸´Ï°µÄ´æÁôÁ¿Ïà²î×î´óʱ£¬Ôò³Æ´Ëʱ¿ÌΪ¡°¶þ´Î¸´Ï°×î¼Ñʱ»úµã¡±
£¨1£©Èôa=-1£¬t=5£¬Çó¡°¶þ´Î¸´Ï°×î¼Ñʱ»úµã¡±£»
£¨2£©Èô³öÏÖÁË¡°¶þ´Î¸´Ï°×î¼Ñʱ»úµã¡±£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸