精英家教网 > 高中数学 > 题目详情
已知椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)经过点P(2,
2
),一个焦点F的坐标是(2,0).
(1)求椭圆T的方程;
(2)设直线l:y=kx+m与椭圆T交于A、B两点,O为坐标原点,椭圆T的离心率为e,若kOA•kOB=e2-1,求证:△AOB的面积为定值.
考点:椭圆的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:(1)由椭圆的a,b,c的关系,点P在椭圆上满足椭圆方程,解方程可得a,b,进而得到椭圆方程;
(2)联立直线方程和椭圆方程,消去y后利用根与系数关系得到A,B两点的横纵坐标的和与积,由弦长公式求得|AB|,由点到直线的距离公式求得O到AB的距离,代入三角形的面积公式证得答案.
解答: (1)解:由题意可得,c=2,即有a2-b2=4,
4
a2
+
2
b2
=1,解得,a=2
2
,b=2,
则随圆T的方程为
x2
8
+
y2
4
=1;
(2)证明:e=
c
a
=
2
2
.则kOA•kOB=e2-1=-
1
2

将y=kx+m代入
x2
8
+
y2
4
=1,消去y,得(1+2k2)x2+4kmx+2m2-8=0,
x1+x2=-
4km
1+2k2
,x1x2=
2m2-8
1+2k2

由△>0,得8k2-m2+4>0.
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
=k2
2m2-8
1+2k2
-
4k2m2
1+2k2
+m2=
m2-8k2
1+2k2

∵kOA•kOB=-
1
2

y1y2
x1x2
=
m2-8k2
2m2-8
=-
1
2
,即m2-4k2=2.
∵|AB|=
1+k2
(x1+x2)2-4x1x2
=
1+k2
(
-4km
1+2k2
)2-
8m2-32
1+2k2

=
4
1+k2
1+2k2

又O点到直线y=kx+m的距离d=
|m|
1+k2

∴S△AOB=
1
2
d|AB|=
1
2
|m|
1+k2
4
1+k2
1+2k2
=
1
2
2(1+2k2)
1+k2
4
1+k2
1+2k2

=2
2
为定值.
点评:本题考查椭圆方程的求法,考查直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,这是处理这类问题的最为常用的方法,考查了弦长公式及点到直线的距离公式,是高考试卷中的压轴题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(cosx)=cos3x,则f(sin
π
3
)的值为(  )
A、-1
B、
3
2
C、0
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

a=2-1,b=e0.5,c=0.5
1
2
,其中e≈2.71828,则a,b,c的大小顺序为(  )
A、a>b>c
B、a>c>b
C、b>a>c
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=
3+i
i
(i是虚数单位),则复数z的共轭复数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

x>1时,f(x)=x+
1
x
+
16x
x2+1
的最小值是
 
,此时x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+a|+|x-2|,
(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;
(Ⅱ)当a=1时,函数f(x)的最小值为m,若a,b,c是正实数,且满足a+b+c=m,求证:a2+b2+c2≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,满足Sn=1-an
(1)求数列{an}的通项公式;
(2)设bn=4(n+1)an,Tn是数列{bn}的前n项和,n∈N*,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an},{bn}都是各项为正数的数列,对任意的正整数n,都有an,bn2,an+1成等差数列,bn2,an+1,bn+12成等比数列.
(1)试问{bn}是否成等差数列?为什么?
(2)如果a1=1,b1=
2
,求数列{
1
an
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

一学生在河岸紧靠河边笔直行走,经观察,在和河对岸靠近河边有一参照物与学生前进方向成30度角,学生前进200米后,测得该参照物与前进方向成75度角,则河的宽度为(  )
A、50(
3
+1)米
B、100(
3
+1)米
C、50
2
D、100
2

查看答案和解析>>

同步练习册答案