精英家教网 > 高中数学 > 题目详情
以下对于几何体的描述,错误的是(   )
A.以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球
B.一个等腰三角形绕着底边上的高所在直线旋转180º形成的封闭曲面所围成的图形叫做圆锥
C.用平面去截圆锥,底面与截面之间的部分叫做圆台
D.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱
C

试题分析:根据圆台的定义,只有当用平行于底面的平面去截圆锥,底面与截面之间的部分叫做圆台
因此C错误,而对于A.以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球,成立。
B.一个等腰三角形绕着底边上的高所在直线旋转180º形成的封闭曲面所围成的图形叫做圆锥,成立
D.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱,成立,故选C.
点评:解决关键是理解何为球体,旋转体的定义,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,

(I)求证
(II)设

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是半圆的直径,是半圆上除外的一个动点,平面,

⑴证明:平面平面
⑵试探究当在什么位置时三棱锥的体积取得最大值,请说明理由并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将正方形ABCD沿对角线BD折成直二面角,有如下四个结论:
①AC⊥BD;②是等边三角形;③所成的角为;④与平面的角。
其中正确的结论的序号是

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中正确的是
A.棱柱的侧面可以是三角形
B.正方体和长方体都是特殊的四棱柱
C.所有的几何体的表面都能展成平面图形
D.棱柱的各条棱都相等

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆锥的底面半径为,高为,则圆锥的侧面积是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体中,点在线段上移动,则异面直线所成的角的取值范围(      )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知AO为平面的一条斜线,O为斜足,OB为OA在平面内的射影,直线OC在平面内,且,则的大小为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知矩形的面积为8,当矩形周长取最小值时,沿对角线折起,则三棱锥的外接球的表面积为________

查看答案和解析>>

同步练习册答案