精英家教网 > 高中数学 > 题目详情

【题目】如图,已知过点,圆心C在抛物线上运动,若MN为在x轴上截得的弦,设

当C运动时,是否变化?证明你的结论.

的最大值,并求出取最大值时值及此时方程.

【答案】1)不变(2)最大值为,圆C方程为

【解析】

(1)先设出圆的方程,联立利用韦达定理表示出|MN|即可发现|MN|的取值是否变化;

(2)由(1)可设Mxp,0)、Mx+p,0),先利用两点间的距离公式求出 l1l2,代入 整理为关于p的函数,结合基本不等式求出其最大值和此时圆C的方程即可.

解:方程为

联立

在抛物线上

,代入

为定值

不变

可设

当且仅当时取等号,即

圆方程为

时,为∠ANx--AMx,又

同理,时,仍可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 为边长为2的等边三角形,平面平面四边形为菱形, 相交于点.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,且其前8项和为52 是各项均为正数的等比数列,且满足 .

1)求数列的通项公式;

(2)令数列的前项和为若对任意正整数都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小张在淘宝网上开一家商店,他以10元每条的价格购进某品牌积压围巾2000条.定价前,小张先搜索了淘宝网上的其它网店,发现:商店以30元每条的价格销售,平均每日销售量为10条;商店以25元每条的价格销售,平均每日销售量为20条.假定这种围巾的销售量(条)是售价(元)的一次函数,且各个商店间的售价、销售量等方面不会互相影响.

(1)试写出围巾销售每日的毛利润(元)关于售价(元)的函数关系式(不必写出定义域),并帮助小张定价,使得每日的毛利润最高(每日的毛利润为每日卖出商品的进货价与销售价之间的差价);

(2)考虑到这批围巾的管理、仓储等费用为200元/天(只要围巾没有售完,均须支付200元/天,管理、仓储等费用与围巾数量无关),试问小张应该如何定价,使这批围巾的总利润最高(总利润=总毛利润-总管理、仓储等费用)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)若在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求满足的值;

(2)若函数是定义在上的奇函数.

①存在,使得不等式有解,求实数的取值范围;

②若函数满足,若对任意,不等式恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,当输入的的值为4时,输出的的值为2,则空白判断框中的条件可能为( ).

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十一黄金小长假期间,某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用(人工费,消耗费用等等)。受市场调控,每个房间每天的房价不得高于340元。设每个房间的房价每天增加x(x10的正整数倍)

(1) 设一天订住的房间数为y,直接写出yx的函数关系式及自变量x的取值范围;

(2) 设宾馆一天的利润为w元,求wx的函数关系式;

(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点分别是椭圆 的左、右焦点,过点且与轴垂直的直线与椭圆交于两点.若为锐角,则该椭圆的离心率的取值范围是_____

查看答案和解析>>

同步练习册答案