(本小题12分)椭圆:的两个焦点为,点在椭圆上,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过圆的圆心,交椭圆于两点,且关于点对称,求直线的方程。
(1)(2)
解析试题分析:
(Ⅰ)依题可设椭圆方程为,
因为点在椭圆上,所以 ,则 ……2分
在△中,, 故,
从而,
所以椭圆的方程为 . ……4分
(Ⅱ)(解法一)设的坐标分别为。
已知圆的方程为,所以圆心的坐标为.
从而可设直线的方程为,
代入椭圆的方程得.……8分
因为关于点对称. 所以 且
解得,所以直线的方程为 即
(经检验,所求直线方程符合题意) ……12分
(解法二)已知圆的方程为,故圆心为.
设的坐标分别为。
由题意 ①
②
由①-②得: ③
因为关于点对称,所以,
代入③得, 即直线的斜率, ……10分
所以直线的方程为,即
(经检验,所求直线方程符合题意.) ……12分
考点:本小题主要考查直线与椭圆的位置关系,考查学生分析问题、解决问题的能力和计算能力.
点评:直线与圆锥曲线(椭圆、双曲线、抛物线等)的位置关系是每年高考的重点也是难点,学生在复习备考时,要了解直线与圆锥曲线的位置关系问题的解决方法,尤其是通性通法和常用技巧,如设而不求、点差法等,另外还要注意计算能力的培养与训练,养成良好的运算习惯.
科目:高中数学 来源: 题型:解答题
设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点。
(1)若直线m与x轴正半轴的交点为T,且,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若(T为(1)中的点)的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.
(Ⅰ)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(Ⅱ)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的右焦点为,离心率为.
(1)若,求椭圆的方程; (2)设直线与椭圆相交于两点,分别为线段的中点.若坐标原点在以为直径的圆上,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线、.(1)求抛物线对应的二次函数的解析式;
(2)求证以ON为直径的圆与直线相切;
(3)求线段MN的长(用表示),并证明M、N两
点到直线的距离之和等于线段MN的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某公园内有一椭圆形景观水池,经测量知,椭圆长轴长为20米,短轴长为16米,现以椭圆长轴所在直线为轴,短轴所在直线为轴,建立平面直角坐标系,如图所示:
(1)为增加景观效果,拟在水池内选定两点安装水雾喷射口,要求椭圆上各点到这两点距离之和都相等,请指出水雾喷射口的位置(用坐标表示),并求椭圆的方程。
(2)为了增加水池的观赏性,拟划出一个以椭圆的长轴顶点A、短轴顶点B及椭圆上某点M构成的三角形区域进行夜景灯光布置,请确定点M的位置,使此三角形区域面积最大。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com