精英家教网 > 高中数学 > 题目详情

【题目】等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=(
A.5
B.9
C.log345
D.10

【答案】D
【解析】解:依题意当n≤10时,a11nan=a1q11n1a1qn1= q9为定值, 又∵a5a6+a4a7=18,
∴a4a7=9,
∴log3a1+log3a2+…+log3a10
=log3a1a10+log3a2a9+log3a3a8+log3a4a7+log3a5a6
=5log3a4a7
=5log39
=10,
故选:D.
利用等比中项、对数性质可知log3a1+log3a2+…+log3a10=5log3a4a7 , 进而计算可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为(
A.7
B.9
C.10
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为菱形,E为棱PB的中点,O为AC与BD的交点,
(Ⅰ)证明:PD∥平面EAC
(Ⅱ)证明:平面EAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正三棱柱ABC﹣A1B1C1中,点D在边BC上,AD⊥C1D.
(1)求证:平面ADC1⊥平面BCC1B1
(2)如果点E是B1C1的中点,求证:AE∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3(n∈N)
(I)求数列{an}的通项公式;
(Ⅱ)令bn=(2n﹣1)an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个样本M的数据是x1 , x2 , ,xn , 它的平均数是5,另一个样本N的数据x12 , x22 , ,xn2它的平均数是34.那么下面的结果一定正确的是(
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(1,2), =(﹣3,2), 当k=时,(1)k + ﹣3 垂直;
当k=时,(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1). (Ⅰ)设 ,求方程f(x)=2的根;
(Ⅱ)设 ,函数g(x)=f(x)﹣2,已知b>3时存在x0∈(﹣1,0)使得g(x0)<0.若g(x)=0有且只有一个零点,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a2=3,a3+a5=2
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn及Sn的最大值.

查看答案和解析>>

同步练习册答案