精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=x2+2x|x-a|,其中a∈R.
(1)当a=-1,求函数f(x)的单调区间;
(2)若不等式f(x)≥3在x∈[1,3]上恒成立,求a的取值范围.

分析 (1)f(x)=$\left\{\begin{array}{l}{-(x+1)^{2},x≤-1}\\{3(x+\frac{1}{3})^{2}-\frac{1}{3},x>-1}\end{array}\right.$,利用二次函数的单调性即可得出;
(2)f(x)=$\left\{\begin{array}{l}{-(x-a)^{2}+{a}^{2},x≤a}\\{3(x-\frac{a}{3})^{2}-\frac{{a}^{2}}{3},x>a}\end{array}\right.$,通过对a分类讨论,利用二次函数的单调性即可得出.

解答 解:(1)f(x)=$\left\{\begin{array}{l}{-(x+1)^{2},x≤-1}\\{3(x+\frac{1}{3})^{2}-\frac{1}{3},x>-1}\end{array}\right.$,
f(x)在(-∞,-1)和$(-\frac{1}{3},+∞)$上递增,在在$(-1,-\frac{1}{3})$上递减.
(2)f(x)=$\left\{\begin{array}{l}{-(x-a)^{2}+{a}^{2},x≤a}\\{3(x-\frac{a}{3})^{2}-\frac{{a}^{2}}{3},x>a}\end{array}\right.$,
当a≥0时,f(x)在(-∞,a)和(a,+∞)上均递增,∵f(a)=a2,则f(x)在R上递增;
当a<0时,f(x)在(-∞,a)和$(\frac{a}{3},+∞)$上递增,在在$(a,\frac{a}{3})$上递减;
可知,f(x)在x∈[1,2]上恒递增,
则fmin(x)=f(1)=1+2|1-a|≥3,解得a≤0或a≥2.

点评 本题考查了二次函数的单调性、分类讨论方法,考查了数形结合思想方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若sin(270°+θ)=2cos(90°+θ),则cos2θ+sinθcosθ-sin2θ的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,输出的s为(  )
A.$\frac{2015}{2016}$B.$\frac{2014}{2015}$C.$\frac{2016}{2015}$D.$\frac{2017}{2016}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$,记z=2x-y的最大值为m,则函数y=ax-1+m(a>0且a≠1)的图象所过定点坐标为(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A中元素(x,y)在映射f 下对应B中元素(x+y,x-y),则B中元素(4,-2)在A中对应的元素为(  )
A.(1,3)B.( 1,6)C.(2,4)D.(2,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若奇函数f(x)与偶函数g(x)满足f(x)+g(x)=2x,则函数g(x)的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线y=x+m与圆x2+y2=4交于不同的两点M、N,且$|\overrightarrow{MN}|≥\sqrt{3}|\overrightarrow{OM}+\overrightarrow{ON|}$,其中O为坐标原点,则实数m的取值范围是$[-\sqrt{2},\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$f(x)=\left\{{\begin{array}{l}{\frac{1}{x},x>0}\\{{2^x},x≤0}\end{array}}\right.$,则f(f(-1))=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=${(\frac{1}{3})^x}$-1,x∈[-1,1]的值域是$[-\frac{2}{3},2]$.

查看答案和解析>>

同步练习册答案