精英家教网 > 高中数学 > 题目详情

【题目】为了迎接第二届国际互联网大会,组委会对报名参加服务的名志愿者进行互联网知识测试,从这名志愿者中采用随机抽样的方法抽取人,所得成绩如下: .

(1)作出抽取的人的测试成绩的茎叶图,以频率为概率,估计这志愿者中成绩不低于分的人数;

(2)从抽取的成绩不低于分的志愿者中,随机选名参加某项活动,求选取的人恰有一人成绩不低于分的概率.

【答案】(1) ;(2) .

【解析】试题分析:()根据成绩,茎为十位数字5,6,7,8,9,个数数字为叶,得茎叶图,由样本得成绩在90以上频率为,由此可估计出成绩不低于90分的人数;()抽取的成绩不低于80分的志愿者有6人,从中选3人可有20种选法(可用列举法列出各种可能),然后再数出恰有一人成绩不低于90分的有12种,由概率公式可得概率.

试题解析:()抽取的15人的成绩茎叶图如图所示,

由样本得成绩在90以上频率为,故志愿者测试成绩在90分以上(包含90分)的人数约为=200.

)设抽取的15人中,成绩在80分以上(包含80分)志愿者为, , , , , ,其中的成绩在90分以上(含90分),

成绩在80分以上(包含80分)志愿者中随机选3名志愿者的不同选法有:{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ , , },{ , , },{ , , }{ }{ }{ }{ }{ }{ },{ }20种,

其中选取的3人中恰有一人成绩在90分以上的不同取法有:{ }{ }{ }{ }{ }{ }{ , , },{ , , }{ }{ }{ }{ }12种,

选取的3人中恰有一人成绩在90分以上的概率为=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列事件是随机事件的是(  )

x>10时,xRx2+x0有解

aR关于x的方程x2+a0在实数集内有解;sinα>sinβ时,α>β

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,用简单随机抽样方法调查了125人,其中女性70人,男性55.女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外35人主要的休闲方式是运动.

1)根据以上数据建立一个列联表;

2)能否在犯错误的概率不超过0.025的前提下,认为性别与休闲方式有关系?

3)在休闲方式为看电视的人中按分层抽样方法抽取6人参加某机构组织的健康讲座,讲座结束后再从这6人中抽取2人作反馈交流,求参加交流的恰好为2位女性的概率.

附:

P

0.05

0.025

0.010

k

3.841

5.024

6.635

休闲方式

性别

看电视

运动

合计

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P是函数图象上任意一点,点Q坐标为,当取得最小值时圆与圆相外切,则的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:

学校

抽查人数

50

15

10

25

“创城”活动中参与的人数

40

10

9

15

(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.

(1)若该区共2000名高中学生,估计学校参与“创城”活动的人数;

(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;

(3)在上表中从两校没有参与“创城”活动的同学中随机抽取2人,求恰好两校各有1人没有参与“创城”活动的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式的解集为

(1)求的值;

(2)若不等式的解集为,不等式的解集为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

Ⅰ)求曲线在点处的切线方程;

Ⅱ)求的单调区间;

Ⅲ)若对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为正的常数函数.

1)若求函数的单调递增区间

2)设在区间上的最小值.为自然对数的底数

查看答案和解析>>

同步练习册答案