精英家教网 > 高中数学 > 题目详情

【题目】在正方体ABCD﹣A1B1C1D1中,E是A1B1上一点,若平面EBD与平面ABCD所成锐二面角的正切值为 ,设三棱锥A﹣A1D1E外接球的直径为a,则 =

【答案】
【解析】解:过E作EF∥AA1交AB于F,过F作FG⊥BD于G,连接EG,则∠EGF为平面EBD与平面AB﹣CD所成锐二面角的平面角,∵ ,∴

设AB=3,则EF=3,∴ ,则BF=2=B1E,

∴A1E=1,则三棱锥A﹣A1D1E外接球的直径

所以答案是

【考点精析】认真审题,首先需要了解棱柱的结构特征(两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形),还要掌握球内接多面体(球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆心在直线上的圆经过点,但不经过坐标原点,并且直线与圆相交所得的弦长为4.

(1)求圆的一般方程;

(2)若从点发出的光线经过轴反射,反射光线刚好通过圆的圆心,求反射光线所在的直线方程(用一般式表达).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了50名女性和50名男性,根据调研结果得到如图所示的等高条形图
(Ⅰ)完成下列2×2列联表:

喜欢旅游

不喜欢旅游

合计

女性

男性

合计

(II)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关”
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图像如图所示.

(1)求函数的解析式;

(2)当时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.

(1)过B作平面BFG∥平面MNC,平面BFG与CD、DM分别交于F、G,求AF与平面MNC所成角的正弦值;
(2)E为直线MN上一点,且平面ADE⊥平面MNC,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆内一点,直线.

(1)若圆的弦恰好被点平分,求弦所在直线的方程;

(2)若过点作圆的两条互相垂直的弦,求四边形的面积的最大值;

(3)若 上的动点,过作圆的两条切线,切点分别为.证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足,且的最小值是.

(1)求的解析式;

(2)若关于的方程在区间上有唯一实数根,求实数的取值范围;

(3)函数,对任意都有恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案