【题目】在正方体ABCD﹣A1B1C1D1中,E是A1B1上一点,若平面EBD与平面ABCD所成锐二面角的正切值为 ,设三棱锥A﹣A1D1E外接球的直径为a,则 = .
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆心在直线上的圆经过点,但不经过坐标原点,并且直线与圆相交所得的弦长为4.
(1)求圆的一般方程;
(2)若从点发出的光线经过轴反射,反射光线刚好通过圆的圆心,求反射光线所在的直线方程(用一般式表达).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了50名女性和50名男性,根据调研结果得到如图所示的等高条形图
(Ⅰ)完成下列2×2列联表:
喜欢旅游 | 不喜欢旅游 | 合计 | |
女性 | |||
男性 | |||
合计 |
(II)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关”
附:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.
(1)过B作平面BFG∥平面MNC,平面BFG与CD、DM分别交于F、G,求AF与平面MNC所成角的正弦值;
(2)E为直线MN上一点,且平面ADE⊥平面MNC,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是圆内一点,直线.
(1)若圆的弦恰好被点平分,求弦所在直线的方程;
(2)若过点作圆的两条互相垂直的弦,求四边形的面积的最大值;
(3)若, 是上的动点,过作圆的两条切线,切点分别为.证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数满足,且的最小值是.
(1)求的解析式;
(2)若关于的方程在区间上有唯一实数根,求实数的取值范围;
(3)函数,对任意都有恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com