【题目】
如图所示,在正三棱柱中,底面边长为,侧棱长为,是棱的中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
【答案】解:(Ⅰ) 连结与交于,
则为的中点,为的中点,为的中位线,//. 又平面,平面//平面………………4分
(Ⅱ)(解法1)过作于,由正三棱柱的性质可知,
平面,连结,在正中,
在直角三角形中,
由三垂线定理的逆定理可得.则为二面角的平面角,
又得,
,
∴.故所求二面角的大小为.………………8分
解法(2)(向量法)
建立如图所示空间直角坐标系,则
.
设是平面的一个法向量,则可得
,所以即取
可得
又平面的一个法向量设则
又知二面角是锐角,所以二面角的大小是……………………………………………………………………8分
(Ⅲ)设求点到平面的距离;因,所以,故,而………………10分
由……………12分
【解析】
(Ⅰ) 连结与交于,则为的中点,
为的中点,
为的中位线,
//.又平面,平面,
//平面……… ……4分
(Ⅱ)过作于,由正三棱柱的性质可知,
平面,连结,在正中,
在直角三角形中,
由三垂线定理的逆定理可得.则为二面角的平面角,又得,
,
∴.故所求二面角的大小为.………………8分
解法(2)(向量法)
建立如图所示空间直角坐标系,则
.
设是平面的一个法向量,则可得
,所以即取可得
又平面的一个法向量设则
又知二面角是锐角,所以二面角的大小是……………………………………… ……………8分
(Ⅲ)设点到平面的距离;因,所以,故,而………… ……10分
由……… …12分
科目:高中数学 来源: 题型:
【题目】学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的,对教师管理水平给出好评的学生人数为总数的,其中对教师教学水平和教师管理水平都给出好评的有120人.
(1)填写教师教学水平和教师管理水平评价的列联表:
对教师管理水平好评 | 对教师管理水平不满意 | 合计 | |
对教师教学水平好评 | |||
对教师教学水平不满意 | |||
合计 |
请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?
(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量.
①求对教师教学水平和教师管理水平全好评的人数的分布列(概率用组合数算式表示);
②求的数学期望和方差.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对相关系数r来说,下列说法正确的是( ).
A.,越接近0,相关程度越大;越接近1,相关程度越小
B.,越接近1,相关程度越大;越大,相关程度越小
C.,越接近1,相关程度越大;越接近0,相关程度越小
D.,越接近1,相关程度越小;越大,相关程度越大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知、,、分别为的外心,重心,.
(1)求点的轨迹的方程;
(2)是否存在过的直线交曲线于,两点且满足,若存在求出的方程,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】棋盘上标有第、、、、站,棋子开始位于第站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第站或第站时,游戏结束.设棋子位于第站的概率为.
(1)当游戏开始时,若抛掷均匀硬币次后,求棋手所走步数之和的分布列与数学期望;
(2)证明:;
(3)求、的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】顾客请一位工艺师把、两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:
则最短交货期为_______个工作日.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年高考刚过,为了解考生对全国2卷数学试卷难度的评价,随机抽取了某学校50名男考生与50名女考生,得到下面的列联表:
非常困难 | 一般 | |
男考生 | 20 | 30 |
女考生 | 40 | 10 |
(1)分别估计该学校男考生、女考生觉得全国2卷数学试卷非常困难的概率;
(2)从该学校随机抽取3名男考生,2名女考生,求恰有4名考生觉得全国2卷数学试卷非常困难的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:
维修次数 | 0 | 1 | 2 | 3 |
台数 | 5 | 10 | 20 | 15 |
以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。
(1)求X的分布列;
(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com