精英家教网 > 高中数学 > 题目详情
如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=
45
|PD|
(1)求:当P在圆上运动时,求点M的轨迹C的方程.
(2)直线l:kx+y-5=0恒与点M的轨迹C有交点,求k的取值范围.
分析:(1)分别设出M和P点的坐标,利用|MD|=
4
5
|PD|求得两点坐标的关系,把P点坐标代入圆的方程化简即可得到点M的轨迹C的方程;
(2)直接联立直线方程和椭圆方程,由判别式大于等于0求解k的取值范围.
解答:解:(1)如图,设M的坐标为(x,y),P的坐标为(xP,yP
由已知得
xP=x
yP=
5
4
y

∵P在圆上,∴x2+(
5
4
y)2=25

即C的方程为
x2
25
+
y2
16
=1

(2)联立
kx+y-5=0
x2
25
+
y2
16
=1
,得(16+25k2)x2-250kx+225=0,
利用判别式△≥0,得(-150k)2-4×225×(16+25k2)≥0.
解得k≤-
3
5
k≥
3
5

∴k的取值范围是k≤-
3
5
k≥
3
5
..
点评:本题考查了代入法求曲线的轨迹方程,考查了直线和圆锥曲线的关系,训练了判别式法判断两曲线的关系,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=
4
5
|PD|
(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程
(Ⅱ)求过点(3,0)且斜率
4
5
的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设P是圆x2+y2=2上的动点,点D是P在x轴上的投影,M为线段PD上一点,|PD|=
2
|MD|.点A(0,
2
)、F1(-1,0).
(1)设在x轴上存在定点F2,使|MF1|+|MF2|为定值,试求F2的坐标,并指出定值是多少?
(2)求|MA|+|MF1|的最大值,并求此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设P是圆x2+y2=2上的动点,PD⊥x轴,垂足为D,M为线段PD上一点,且|PD|=
2
|MD|,点A、F1的坐标分别为(0,
2
),(-1,0).
(1)求点M的轨迹方程;
(2)求|MA|+|MF1|的最大值,并求此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名一模)如图,设P是圆x2+y2=2上的动点,点D是P在x轴上的投影.M为线段PD上一点,且|MD|=
2
2
|PD|

(1)当点P在圆上运动时,求点M的轨迹C的方程;
(2)已知点F1(-1,0),F2(1,0),设点A(1,m)(m>0)是轨迹C上的一点,求∠F1AF2的平分线l所在直线的方程.

查看答案和解析>>

同步练习册答案