精英家教网 > 高中数学 > 题目详情
已知(2x-
1
x
n的展开式中的二项式系数之和比(2x+
1
x
2n的展开式中奇数项的二项式系数之和小112,第二个展开式中二项系数最大项的值为1120,求x.
考点:二项式定理的应用
专题:计算题,二项式定理
分析:令t=2n>0,依题意,
1
2
t2-t-112=0,从而可求得t及n的值,于是,可得第二个式子为:(2x+x
1
x
8,依题意,利用二项展开式的通项公式可求得x2=1,继而可得x的值.
解答: 解:令t=2n>0,则
1
2
t2-t-112=0
解得:t=16或t=-14(舍去),
∴2n=16⇒n=4
于是,第二个式子为:(2x+
1
x
8
由题意得:T5=
C
4
8
(2x)4
1
x
4
=1120x2=1120,
∴x2=1,∴x,1,
∴第二个式子中x的值为1
点评:本题考查二项式定理的应用,令t=2n>0,依题意,
1
2
t2-t-112=0是关键,突出考查二项展开式的通项公式,考查对数运算,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于三条不同直线a,b,l以及两个不同平面α,β,下面命题正确的是(  )
A、若a∥α,b∥α,则a∥b
B、若a∥α,b⊥α,则b⊥α
C、若a⊥α,α∥β,则α⊥β
D、若a?α,b?α,且l⊥a,l⊥b,则l⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
4
x2+cosx,f′(x)为f(x)的导函数,则f′(x)的图象是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n为两条不同的直线,α,β为两个不同的平面,且n?β,则下列叙述正确的是(  )
A、m∥n,m?α⇒α∥β
B、m∥n,m⊥α⇒α⊥β
C、α⊥β,m⊥n⇒n∥α
D、α∥β,m?α⇒m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x+z,3),
b
=(2,y-z),且
a
b
.若x,y满足不等式|x|+|y|≤1,则z的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点P在圆C1:x2+(y+3)2=1上,点Q在圆C2:(x-4)2+y2=4上,则|PQ|的最大值是(  )
A、8B、5C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

下面的程序运行的功能是(  )
A、求1+
1
2
+
1
3
+…+
1
2013
的值
B、求1+
1
2
+
1
3
+…+
1
2014
的值
C、求1+1+
1
2
+
1
3
+…+
1
2013
的值
D、求1+1+
1
2
+
1
3
+…+
1
2014
的值

查看答案和解析>>

科目:高中数学 来源: 题型:

设x2+y2+z2=1,若λxyz≤
1+z
2
对一切x,y,z∈R*均成立,则λ的最大值为(  )
A、2(
2
+1)
B、
3
2
3
+1)
C、4
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为双曲线
x2
a2
-
y2
b2
=1右焦点,P是双曲线上的点,若它的渐近线上,存在一点Q使得|FP|=2|PQ|,则双曲线离心率的取值范围是
 

查看答案和解析>>

同步练习册答案