精英家教网 > 高中数学 > 题目详情

【题目】(1)已知函数,其中,求函数的图象恰好经过第一、二、三象限的概率;

(2)某校早上8:10开始上课,假设该校学生小张与小王在早上7:30~8:00之间到校,且每人到该时间段内到校时刻是等可能的,求两人到校时刻相差10分钟以上的概率.

【答案】(1)(2)

【解析】

(1)先求出函数的系数构成的数对的个数,再求出满足题意的数对的个数,由古典概型的概率公式即可求出结果;

(2)先设小张和小王到校时刻分别为,依题意确定的关系,作出对于图像,由几何概型的计算公式,即可求解.

(1)设函数的系数构成的数对为,则由题意知数对可能为:共16种情况.

要使得函数的图象经过第一,二,三象限,则需,即

符合条件的数对为,共3对.

模型符合古典概型的定义,所以所求事件的概率为.

(2)设小张和小王到校时刻分别为,且.

两人到校时刻相差10分钟等价于,且.

模型符合几何概型的定义,由图可知:

所以所求事件的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的两个极值点分别在(-1,0)(0,1)内,则2a-b的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数上单调递减,且,则不等式的解集________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】房产税改革向前推进之路,虽历经坎坷,但步伐从未停歇,作为未来的新增税种,十二届全国人大常委会已将房产税立法正式列入五年立法规划。某市税务机关为了进一步了解民众对政府择机出台房产税的认同情况,随机抽取了一小区住户进行调查,各户人均月收入(单位:千元)的频数分布及赞成出台房产税的户数如下表:

人均月收入

频数

6

10

13

11

8

2

不赞成户数

5

9

12

9

4

1

若将小区人均月收入不低于7.5千元的住户称为“高收入户”,人均月收入低于7.5千元的住户称为“非高收入户”,有列联表:

非高收入户

高收入户

总计

不赞成

赞成

总计

(1)根据已知条件完成如图所给的列联表,并说明能否在犯错误的概率不超过0.005的前提下认为“收入的高低”与“赞成出台房产税”有关.

(2)现从月收入在的住户中随机抽取两户,求所抽取的两户都不赞成出台房产税的概率;

附:临界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年秋季,我省高一年级全面实行新高考政策,为了调查学生对新政策的了解情况,准备从某校高一三个班级抽取10名学生参加调查.已知三个班级学生人数分别为40人,30人,30人.考虑使用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按三个班级依次统一编号为1,2,…,100;使用系统抽样,将学生统一编号为1,2,…,100,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:

①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;

③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.

关于上述样本的下列结论中,正确的是( )

A. ①③都可能为分层抽样 B. ②④都不能为分层抽样

C. ①④都可能为系统抽样 D. ②③都不能为系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知函数,其中,求函数的图象恰好经过第一、二、三象限的概率;

(2)某校早上8:10开始上课,假设该校学生小张与小王在早上7:30~8:00之间到校,且每人到该时间段内到校时刻是等可能的,求两人到校时刻相差10分钟以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O,直线l

若直线l与圆O交于不同的两点AB,当时,求实数k的值;

P是直线上的动点,过P作圆O的两条切线PCPD,切点分别为CD,试探究:直线CD是否过定点若存在,请求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当m>0时,若对于区间[1,2]上的任意两个实数x1,x2,且x1<x2,都有,成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的最小正周期;

2)求的单调增区间;

3)若,求的最大值与最小值.

查看答案和解析>>

同步练习册答案