精英家教网 > 高中数学 > 题目详情

在区间[t,t+1]上满足不等式|x3-3x+1|≥1的解有且只有一个,则实数t的取值范围为________.

(0,-1)
分析:先在R上求解不等式|x3-3x+1|≥1,然后根据不等式的解集确定“在区间[t,t+1]上满足不等式|x3-3x+1|≥1的解有且只有一个”t的范围.
解答:不等式|x3-3x+1|≥1?x3-3x+1≥1 ①或x3-3x+1≤-1 ②
解①得-≤x≤0或x
解②得x≤-2或x=1
∴不等式|x3-3x+1|≥1的解集为{x|x≤-2或-≤x≤0或x或x=1}
∵在区间[t,t+1]上满足不等式|x3-3x+1|≥1的解有且只有一个
∴0<t<-1
故答案为:(0,-1)
点评:在解不等式的过程中应用了因式分解求解不等式,增加了题目的难度,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+8x,g(x)=6lnx+m.
(Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t);
(Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数y=f(x)的图象经过三点A(-3,7),B(5,7),C(2,-8).
(1)求函数y=f(x)的解析式
(2)求函数y=f(x)在区间[t,t+1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为函数f(x)不动点.已知函数f(x)=ax2+(b-7)x+18有两个不动点分别是-3和2.
(1)求a,b的值及f(x)的表达式;
(2)试求函数f(x)在区间[t,t+1]上的最大值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知n∈N*,设函数fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函数y=f2(x)-kx(k∈R)的单调区间;
(2)是否存在整数t,对于任意n∈N*,关于x的方程fn(x)=0在区间[t,t+1]上有唯一实数解?若存在,求t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2013届新课标高三配套第四次月考文科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0.

(1)求函数f(x)的单调区间;

(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;

(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.

 

查看答案和解析>>

同步练习册答案